Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 599(7883): 51-56, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34732867

RESUMO

Charged particles subjected to magnetic fields form Landau levels (LLs). Originally studied in the context of electrons in metals1, fermionic LLs continue to attract interest as hosts of exotic electronic phenomena2,3. Bosonic LLs are also expected to realize novel quantum phenomena4,5, but, apart from recent advances in synthetic systems6,7, they remain relatively unexplored. Cooper pairs in superconductors-composite bosons formed by electrons-represent a potential condensed-matter platform for bosonic LLs. Under certain conditions, an applied magnetic field is expected to stabilize an unusual superconductor with finite-momentum Cooper pairs8,9 and exert control over bosonic LLs10-13. Here we report thermodynamic signatures, observed by torque magnetometry, of bosonic LL transitions in the layered superconductor Ba6Nb11S28. By applying an in-plane magnetic field, we observe an abrupt, partial suppression of diamagnetism below the upper critical magnetic field, which is suggestive of an emergent phase within the superconducting state. With increasing out-of-plane magnetic field, we observe a series of sharp modulations in the upper critical magnetic field that are indicative of distinct vortex states and with a structure that agrees with predictions for Cooper pair LL transitions in a finite-momentum superconductor10-14. By applying Onsager's quantization rule15, we extract the momentum. Furthermore, study of the fermionic LLs shows evidence for a non-zero Berry phase. This suggests opportunities to study bosonic LLs, topological superconductivity, and their interplay via transport16, scattering17, scanning probe18 and exfoliation techniques19.

2.
Science ; 370(6513): 231-236, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33033221

RESUMO

Advances in low-dimensional superconductivity are often realized through improvements in material quality. Apart from a small group of organic materials, there is a near absence of clean-limit two-dimensional (2D) superconductors, which presents an impediment to the pursuit of numerous long-standing predictions for exotic superconductivity with fragile pairing symmetries. We developed a bulk superlattice consisting of the transition metal dichalcogenide (TMD) superconductor 2H-niobium disulfide (2H-NbS2) and a commensurate block layer that yields enhanced two-dimensionality, high electronic quality, and clean-limit inorganic 2D superconductivity. The structure of this material may naturally be extended to generate a distinct family of 2D superconductors, topological insulators, and excitonic systems based on TMDs with improved material properties.

3.
Proc Math Phys Eng Sci ; 475(2230): 20190220, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31736641

RESUMO

By using an asymptotic analysis and numerical simulations, we derive and investigate a system of homogenized Maxwell's equations for conducting material sheets that are periodically arranged and embedded in a heterogeneous and anisotropic dielectric host. This structure is motivated by the need to design plasmonic crystals that enable the propagation of electromagnetic waves with no phase delay (epsilon-near-zero effect). Our microscopic model incorporates the surface conductivity of the two-dimensional (2D) material of each sheet and a corresponding line charge density through a line conductivity along possible edges of the sheets. Our analysis generalizes averaging principles inherent in previous Bloch-wave approaches. We investigate physical implications of our findings. In particular, we emphasize the role of the vector-valued corrector field, which expresses microscopic modes of surface waves on the 2D material. We demonstrate how our homogenization procedure may set the foundation for computational investigations of: effective optical responses of reasonably general geometries, and complicated design problems in the plasmonics of 2D materials.

4.
Science ; 355(6324): 503-507, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28104795

RESUMO

Two-dimensional (2D) materials offer a promising platform for exploring condensed matter phenomena and developing technological applications. However, the reduction of material dimensions to the atomic scale poses a challenge for traditional measurement and interfacing techniques that typically couple to macroscopic observables. We demonstrate a method for probing the properties of 2D materials via nanometer-scale nuclear quadrupole resonance (NQR) spectroscopy using individual atomlike impurities in diamond. Coherent manipulation of shallow nitrogen-vacancy (NV) color centers enables the probing of nanoscale ensembles down to approximately 30 nuclear spins in atomically thin hexagonal boron nitride (h-BN). The characterization of low-dimensional nanoscale materials could enable the development of new quantum hybrid systems, combining atomlike systems coherently coupled with individual atoms in 2D materials.

5.
Phys Rev Lett ; 117(11): 116804, 2016 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-27661712

RESUMO

Twisted bilayer graphene (TBLG) is one of the simplest van der Waals heterostructures, yet it yields a complex electronic system with intricate interplay between moiré physics and interlayer hybridization effects. We report on electronic transport measurements of high mobility small angle TBLG devices showing clear evidence for insulating states at the superlattice band edges, with thermal activation gaps several times larger than theoretically predicted. Moreover, Shubnikov-de Haas oscillations and tight binding calculations reveal that the band structure consists of two intersecting Fermi contours whose crossing points are effectively unhybridized. We attribute this to exponentially suppressed interlayer hopping amplitudes for momentum transfers larger than the moiré wave vector.

6.
Phys Rev Lett ; 114(10): 108001, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25815967

RESUMO

We use machine-learning methods on local structure to identify flow defects-or particles susceptible to rearrangement-in jammed and glassy systems. We apply this method successfully to two very different systems: a two-dimensional experimental realization of a granular pillar under compression and a Lennard-Jones glass in both two and three dimensions above and below its glass transition temperature. We also identify characteristics of flow defects that differentiate them from the rest of the sample. Our results show it is possible to discern subtle structural features responsible for heterogeneous dynamics observed across a broad range of disordered materials.

7.
Phys Rev Lett ; 87(9): 095501, 2001 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-11531572

RESUMO

Dislocation core properties of Al with and without H impurities are studied using the Peierls-Nabarro model with parameters determined by ab initio calculations. We find that H not only facilitates dislocation emission from the crack tip but also enhances dislocation mobility dramatically, leading to macroscopically softening and thinning of the material ahead of the crack tip. We observe strong binding between H and dislocation cores, with the binding energy depending on dislocation character. This dependence can directly affect the mechanical properties of Al by inhibiting dislocation cross-slip and developing slip planarity.

8.
Proteins ; 44(4): 484-9, 2001 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-11484226

RESUMO

Protein structure and dynamics are the keys to a wide range of problems in biology. In principle, both can be fully understood by using quantum mechanics as the ultimate tool to unveil the molecular interactions involved. Indeed, quantum mechanics of atoms and molecules have come to play a central role in chemistry and physics. In practice, however, direct application of quantum mechanics to protein systems has been prohibited by the large molecular size of proteins. As a consequence, there is no general quantum mechanical treatment that not only exceeds the accuracy of state-of-the-art empirical models for proteins but also maintains the efficiency needed for extensive sampling in the conformational space, a requirement mandated by the complexity of protein systems. Here we show that, given recent developments in methods, a general quantum mechanical-based treatment can be constructed. We report a molecular dynamics simulation of a protein, crambin, in solution for 350 ps in which we combine a semiempirical quantum-mechanical description of the entire protein with a description of the surrounding solvent, and solvent-protein interactions based on a molecular mechanics force field. Comparison with a recent very high-resolution crystal structure of crambin (Jelsch et al., Proc Natl Acad Sci USA 2000;102:2246-2251) shows that geometrical detail is better reproduced in this simulation than when several alternate molecular mechanics force fields are used to describe the entire system of protein and solvent, even though the structure is no less flexible. Individual atomic charges deviate in both directions from "canonical" values, and some charge transfer is found between the N and C-termini. The capability of simulating protein dynamics on and beyond the few hundred ps timescale with a demonstrably accurate quantum mechanical model will bring new opportunities to extend our understanding of a range of basic processes in biology such as molecular recognition and enzyme catalysis.


Assuntos
Simulação por Computador , Proteínas de Plantas/química , Teoria Quântica , Alanina/análogos & derivados , Alanina/química , Alanina/metabolismo , Fenômenos Biomecânicos , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Proteínas de Plantas/metabolismo , Conformação Proteica , Eletricidade Estática , Termodinâmica , Fatores de Tempo , Água/química , Água/metabolismo
9.
J Am Chem Soc ; 123(10): 2224-30, 2001 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-11456868

RESUMO

We report density functional theory calculations using the Adaptive Coordinate Real-space Electronic Structure (ACRES) method of the terminal oxygen vacancy on the (010) surface of MoO3, within a (2 x 2) ordered array of vacancies on the surface. Analysis of the electronic structure of this surface shows that there are unoccupied dangling d(xz) and d(z)2 orbitals perpendicular to the surface that are created by the removal of terminal oxygen. The Mo-oxygen bonds surrounding the vacancy contract; however, the overall morphology of the surface is not drastically distorted. The vacancies alter the chemical character of the surface, as shown by studies of hydrogen and methyl binding. On both the "perfect" and vacancy surfaces, hydrogen was most strongly adsorbed over the terminal oxygen and most weakly bound over the symmetric bridging oxygen. Hydrogen is bound over the Mo atom, with a slightly smaller binding energy than hydrogen over the asymmetric bridging oxygen. The most favorable binding site for methyl on the vacancy surface is over the Mo atom exposed by removal of a terminal oxygen, whereas methyl bound to terminal oxygen is most stable on the perfect surface. There is no local minimum for adsorption over the symmetric bridging oxygen; instead, a methyl placed over this site moves toward the terminal oxygen vacancy. Analysis of the bonding shows that methyl is bound more strongly than hydrogen over the Mo atom because the C 2p orbital has better overlap with the Mo d(z)2 orbital than the hydrogen 1s. In addition, the steric repulsion observed for methyl over the perfect MoO3(010) surface is more easily relieved with the presence of the terminal oxygen vacancy.

10.
Phys Rev Lett ; 86(20): 4556-9, 2001 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-11384282

RESUMO

We study the thermodynamics of C incorporation on Si(100), a system where strain and chemical effects are both important. Our analysis is based on first-principles atomistic calculations to obtain the important lowest-energy structures, and a classical effective Hamiltonian which is employed to represent the long-range strain effects and incorporate the thermodynamic aspects. We determine the equilibrium phase diagram in temperature and C chemical potential, which allows us to predict the mesoscopic structure of the system that should be observed under experimentally relevant conditions.

11.
Phys Rev Lett ; 84(6): 1260-3, 2000 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-11017493

RESUMO

Nanoindentation experiments are an excellent probe of micromechanical properties, but their interpretation is complicated by their multiscale nature. We report simulations of silicon nanoindentation, based on an extended version of the local quasicontinuum model, capable of handling complex Bravais crystals. Our simulations reproduce the experimental load vs displacement curves and provide microscopic information such as the distribution of transformed metallic phases of silicon underneath the indenter. This information is linked to the macroscopic electrical resistance, giving a satisfactory explanation of experimental results.

12.
Phys Rev Lett ; 84(20): 4649-52, 2000 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-10990762

RESUMO

We have determined the structure of AlSb and GaSb (001) surfaces prepared by molecular beam epitaxy under typical Sb-rich device growth conditions. Within the range of flux and temperature where the diffraction pattern is nominally (1x3), we find that there are actually three distinct, stable (4x3) surface reconstructions. The three structures differ from any previously proposed for these growth conditions, with two of the reconstructions incorporating mixed III-V dimers within the Sb surface layer. These heterodimers appear to play an important role in island nucleation and growth.

13.
Phys Rev Lett ; 77(21): 4370-4373, 1996 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-10062521
16.
Phys Rev Lett ; 76(7): 1114-1117, 1996 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-10061637
18.
19.
Phys Rev Lett ; 75(14): 2742-2745, 1995 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-10059393
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...