Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Nutr ; 151(5): 1061-1072, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33693747

RESUMO

Diet has been shown to play an important role in maintaining normal homeostasis in the human body. Milk and milk products are a major component of the Western diet, but their consumption may predispose sensitive individuals to adverse health outcomes. Current literature about milk products recognizes various bioactive components including lactate, whey protein, and ß-casein protein. Specifically, cow milk has 2 major subvariants of its ß-casein protein, A1 and A2, due to a single nucleotide difference that changes the codon at position 67. Whereas the A2 polymorphism is unlikely to undergo enzymatic cleavage during digestion, the A1 polymorphism is more likely to undergo enzymatic cleavage resulting in the product peptide ß-casomorphin-7, a known µ-opioid receptor agonist. The objective of this article is to review the current understanding of the 2 major ß-casein subvariants and their effects on various organ systems that may have an impact on the health of an individual. Synthesis of the current existing literature on this topic is relevant given the increased association of milk consumption with adverse effects in susceptible individuals resulting in a rising interest in consuming milk alternatives. We discuss the influence of the ß-casein protein on the gastrointestinal system, endocrine system, nervous system, and cardiovascular system as well as its role in antioxidants and methylation. A1 milk consumption has been associated with enhanced inflammatory markers. It has also been reported to have an opioid-like response that can lead to manifestations of clinical symptoms of neurological disorders such as autism spectrum disorder. On the other hand, A2 milk consumption has been associated with beneficial effects and is easier to digest in sensitive individuals. Further research is warranted to investigate the short- and long-term effects of consumption of A1 ß-casein in comparison with milk with A2 ß-casein proteins.


Assuntos
Caseínas/química , Caseínas/metabolismo , Leite/química , Animais , Caseínas/genética , Bovinos , Humanos , Polimorfismo Genético
3.
Artigo em Inglês | MEDLINE | ID: mdl-29737266

RESUMO

Cardiovascular Diseases (CVDs) are a leading cause of morbidity and mortality worldwide. The underlying pathology for cardiovascular disease is largely atherosclerotic in nature and the steps include fatty streak formation, plaque progression and plaque rupture. While there is optimal drug therapy available for patients with CVD, there are also underlying drug delivery obstacles that must be addressed. Challenges in drug delivery warrant further studies for the development of novel and more efficacious medical therapies. An extensive understanding of the molecular mechanisms of disease in combination with current challenges in drug delivery serves as a platform for the development of novel drug therapeutic targets for CVD. The objective of this article is to review the pathogenesis of atherosclerosis, first-line medical treatment for CVD, and key obstacles in an efficient drug delivery.


Assuntos
Aterosclerose/complicações , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/terapia , Sistemas de Liberação de Medicamentos/métodos , Aterosclerose/patologia , Humanos
4.
Artigo em Inglês | MEDLINE | ID: mdl-29886837

RESUMO

BACKGROUND: Cardiovascular diseases such as endocarditis are the second most common cause of death worldwide. Infective Endocarditis (IE) is the most severe infection of the heart associated with significant mortality and morbidity. The binding and invasion of Human Aortic Endothelial Cells (HAECs) by pathogenic microbes can play an important role in the pathogenesis of IE. OBJECTIVE: Pseudomonas aeruginosa is an emerging pathogen that has been associated with IE. However, it is not known whether P. aeruginosa can bind and interact with HAECs. The aim of this study was to determine whether P. aeruginosa can bind and colonize HAECs. METHODS: The invasion of HAECs by P. aeruginosa was assessed by gentamicin protection assay. Cytokine levels were determined by enzyme-linked Immunosorbent Assay (ELISA) kits. Cell damage was determined by Lactate Dehydrogenase (LDH) assay. RESULTS: P. aeruginosa can bind and invade HAECs. Infection of HAECs with P. aeruginosa induces TNF-α IL-1ß, IL-6 and IL-8 cytokine production leading to the generation of inflammatory milieu that can cause tissue damage as observed in human clinical cases of IE. We also observed that P. aeruginosa induces cell damage in HAECs. CONCLUSION: In this study, we demonstrate for first time that P. aeruginosa can invade and survive inside HAECs. This cell culture model can be of immense importance to determine the efficacy of drug targets against IE.


Assuntos
Morte Celular/imunologia , Endocardite/fisiopatologia , Células Endoteliais/microbiologia , Pseudomonas aeruginosa/patogenicidade , Humanos
5.
Front Cell Neurosci ; 12: 256, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30158857

RESUMO

Currently, 1 out of every 59 children in the United States is diagnosed with autism. While initial research to find the possible causes for autism were mostly focused on the genome, more recent studies indicate a significant role for epigenetic regulation of gene expression and the microbiome. In this review article, we examine the connections between early disruption of the developing microbiome and gastrointestinal tract function, with particular regard to susceptibility to autism. The biological mechanisms that accompany individuals with autism are reviewed in this manuscript including immune system dysregulation, inflammation, oxidative stress, metabolic and methylation abnormalities as well as gastrointestinal distress. We propose that these autism-associated biological mechanisms may be caused and/or sustained by dysbiosis, an alteration to the composition of resident commensal communities relative to the community found in healthy individuals and its redox and epigenetic consequences, changes that in part can be due to early use and over-use of antibiotics across generations. Further studies are warranted to clarify the contribution of oxidative stress and gut microbiome in the pathophysiology of autism. A better understanding of the microbiome and gastrointestinal tract in relation to autism will provide promising new opportunities to develop novel treatment modalities.

7.
Artif Cells Nanomed Biotechnol ; 46(sup1): 831-840, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29447002

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. Due to the significant impact of CVD on humans, there is a need to develop novel treatment modalities tailored to major classes of cardiac diseases including hypertension, coronary artery disease, cardiomyopathies, arrhythmias, valvular disease and inflammatory diseases. In this article, we discuss recent advancements regarding development of therapeutic strategies based on stem cells, aptamers, exosomes, drug-eluting and dissolvable stents, immunotherapy and nanomedicine for the treatment of CVD. We summarize current research and clinical advances in cardiovascular therapeutics, with a focus on therapies that move beyond current oral- or sublingual-based regimens. This review article provides insight into current research and future treatment strategies that hold a great relevance for future clinical practice in pursuit of improving quality of life of patients suffering from CVD.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Doenças Cardiovasculares/terapia , Exossomos/metabolismo , Nanomedicina/métodos , Células-Tronco , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Humanos
8.
Expert Opin Drug Deliv ; 15(3): 301-318, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29272976

RESUMO

INTRODUCTION: The emergent field of nanoparticles has presented a wealth of opportunities for improving the treatment of human diseases. Recent advances have allowed for promising developments in drug delivery, diagnostics, and therapeutics. Modified delivery systems allow improved drug delivery over traditional pH, microbe, or receptor dependent models, while antibody association allows for more advanced imaging modalities. Nanoparticles have potential clinical application in the field of gastroenterology as they offer several advantages compared to the conventional treatment systems including target drug delivery, enhanced treatment efficacy, and reduced side effects. AREAS COVERED: The aim of this review article is to summarize the recent advancements in developing nanoparticle technologies to treat gastrointestinal diseases. We have covered the application of nanoparticles in various gastrointestinal disorders including inflammatory bowel disease and colorectal cancer. We also have discussed how the gut microbiota affects the nanoparticle based drug delivery in the gastrointestinal tract. EXPERT OPINION: Nanoparticles based drug delivery offers a great platform for targeted drug delivery for gastrointestinal disorders. However, it is influenced by the presence of microbiota, drug interaction with nanoparticles, and cytotoxicity of nanoparticles. With the advancements in nanoparticle technology, it may be possible to overcome these barriers leading to efficient drug delivery for gastrointestinal disorders based on nanoparticle platform.


Assuntos
Sistemas de Liberação de Medicamentos , Gastroenteropatias/tratamento farmacológico , Microbioma Gastrointestinal/fisiologia , Nanopartículas/administração & dosagem , Preparações Farmacêuticas/administração & dosagem , Humanos
9.
Artigo em Inglês | MEDLINE | ID: mdl-29276699

RESUMO

Zika virus (ZIKV) is an emerging healthcare threat. The presence of the mosquito Aedes species across South and Central America in combination with complementary climates have incited an epidemic of locally transmitted cases of ZIKV infection in Brazil. As one of the most significant current public health concerns in the Americas, ZIKV epidemic has been a cause of alarm due to its known and unknown complications. At this point, there has been a clear association between ZIKV infection and severe clinical manifestations in both adults and neonates, including but not limited to neurological deficits such as Guillain-Barré syndrome (GBS) and microcephaly, respectively. The gravity of the fetal anomalies linked to ZIKV vertical transmission from the mother has prompted a discussion on whether to include ZIKV as a formal member of the TORCH [Toxoplasma gondii, other, rubella virus, cytomegalovirus (CMV), and herpes] family of pathogens known to breach placental barriers and cause congenital disease in the fetus. The mechanisms of these complex phenotypes have yet to be fully described. As such, diagnostic tools are limited and no effective modalities are available to treat ZIKV. This article will review the recent advancements in understanding the pathogenesis of ZIKV infection as well as diagnostic tests available to detect the infection. Due to the increase in incidence of ZIKV infections, there is an immediate need to develop new diagnostic tools and novel preventive as well as therapeutic modalities based on understanding the molecular mechanisms underlying the disease.


Assuntos
Transmissão de Doença Infecciosa , Saúde Global , Infecção por Zika virus/epidemiologia , Controle de Doenças Transmissíveis/métodos , Testes Diagnósticos de Rotina/métodos , Gerenciamento Clínico , Síndrome de Guillain-Barré/epidemiologia , Síndrome de Guillain-Barré/etiologia , Humanos , Incidência , Microcefalia/epidemiologia , Microcefalia/etiologia , Infecção por Zika virus/complicações , Infecção por Zika virus/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA