Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSystems ; 9(6): e0141523, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38819130

RESUMO

Wastewater surveillance has emerged as a crucial public health tool for population-level pathogen surveillance. Supported by funding from the American Rescue Plan Act of 2021, the FDA's genomic epidemiology program, GenomeTrakr, was leveraged to sequence SARS-CoV-2 from wastewater sites across the United States. This initiative required the evaluation, optimization, development, and publication of new methods and analytical tools spanning sample collection through variant analyses. Version-controlled protocols for each step of the process were developed and published on protocols.io. A custom data analysis tool and a publicly accessible dashboard were built to facilitate real-time visualization of the collected data, focusing on the relative abundance of SARS-CoV-2 variants and sub-lineages across different samples and sites throughout the project. From September 2021 through June 2023, a total of 3,389 wastewater samples were collected, with 2,517 undergoing sequencing and submission to NCBI under the umbrella BioProject, PRJNA757291. Sequence data were released with explicit quality control (QC) tags on all sequence records, communicating our confidence in the quality of data. Variant analysis revealed wide circulation of Delta in the fall of 2021 and captured the sweep of Omicron and subsequent diversification of this lineage through the end of the sampling period. This project successfully achieved two important goals for the FDA's GenomeTrakr program: first, contributing timely genomic data for the SARS-CoV-2 pandemic response, and second, establishing both capacity and best practices for culture-independent, population-level environmental surveillance for other pathogens of interest to the FDA. IMPORTANCE: This paper serves two primary objectives. First, it summarizes the genomic and contextual data collected during a Covid-19 pandemic response project, which utilized the FDA's laboratory network, traditionally employed for sequencing foodborne pathogens, for sequencing SARS-CoV-2 from wastewater samples. Second, it outlines best practices for gathering and organizing population-level next generation sequencing (NGS) data collected for culture-free, surveillance of pathogens sourced from environmental samples.


Assuntos
COVID-19 , SARS-CoV-2 , United States Food and Drug Administration , Águas Residuárias , SARS-CoV-2/genética , Estados Unidos/epidemiologia , Águas Residuárias/virologia , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/prevenção & controle , COVID-19/virologia , Humanos , Pandemias/prevenção & controle , Genoma Viral/genética , Vigilância Epidemiológica Baseada em Águas Residuárias
2.
Front Microbiol ; 14: 1200983, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601366

RESUMO

Most current Salmonella subtyping analyses rely on whole genome sequencing (WGS), which focuses on the high-resolution analysis of single genomes or multiple single genomes from the isolated colonies on microbiological agar plates. In this study, we introduce bioinformatics innovations for a metagenomic outbreak response workflow that accurately identifies multiple Salmonella serovars at the same time. bettercallsal is one of the first analysis tools to identify multiple Salmonella enterica serotypes from metagenomic or quasi-metagenomic datasets with high accuracy, allowing these isolate-independent methods to be incorporated into surveillance and root cause investigations. It was tested on an in silico benchmark dataset comprising 29 unique Salmonella serovars, 46 non-Salmonella bacterial genomes, and 10 viral genomes at varying read depths and on previously well-characterized and sequenced non-selective primary and selective enrichments of papaya and peach samples from separate outbreak investigations that resulted in the identification of multiple Salmonella serovars using traditional isolate culturing and WGS as well as nucleic acid assays. Analyses were also conducted on these datasets using a custom-built k-mer tool, SeqSero2, and Kallisto to compare serotype calling to bettercallsal. The in silico dataset analyzed with bettercallsal achieved the maximum precision, recall, and accuracy of 100, 83, and 94%, respectively. In the papaya outbreak samples, bettercallsal identified the presence of multiple serovars in agreement with the Luminex® xMAP assay results and also identified more serovars per sample, as evidenced by NCBI SNP clustering. In peach outbreak samples, bettercallsal identified two serovars in concordance with k-mer analysis and the Luminex xMAP assay. The genome hit reported by bettercallsal clustered with the chicken isolate genome, as reported by the FDA peach outbreak investigation from sequenced isolates (WGS). Overall, bettercallsal outperformed k-mer, Seqsero2, and Kallisto in identifying multiple serovars from enrichment cultures using shotgun metagenomic sequencing.

3.
PeerJ ; 11: e14596, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36721781

RESUMO

Background: The accurate identification of SARS-CoV-2 (SC2) variants and estimation of their abundance in mixed population samples (e.g., air or wastewater) is imperative for successful surveillance of community level trends. Assessing the performance of SC2 variant composition estimators (VCEs) should improve our confidence in public health decision making. Here, we introduce a linear regression based VCE and compare its performance to four other VCEs: two re-purposed DNA sequence read classifiers (Kallisto and Kraken2), a maximum-likelihood based method (Lineage deComposition for Sars-Cov-2 pooled samples (LCS)), and a regression based method (Freyja). Methods: We simulated DNA sequence datasets of known variant composition from both Illumina and Oxford Nanopore Technologies (ONT) platforms and assessed the performance of each VCE. We also evaluated VCEs performance using publicly available empirical wastewater samples collected for SC2 surveillance efforts. Bioinformatic analyses were performed with a custom NextFlow workflow (C-WAP, CFSAN Wastewater Analysis Pipeline). Relative root mean squared error (RRMSE) was used as a measure of performance with respect to the known abundance and concordance correlation coefficient (CCC) was used to measure agreement between pairs of estimators. Results: Based on our results from simulated data, Kallisto was the most accurate estimator as it had the lowest RRMSE, followed by Freyja. Kallisto and Freyja had the most similar predictions, reflected by the highest CCC metrics. We also found that accuracy was platform and amplicon panel dependent. For example, the accuracy of Freyja was significantly higher with Illumina data compared to ONT data; performance of Kallisto was best with ARTICv4. However, when analyzing empirical data there was poor agreement among methods and variations in the number of variants detected (e.g., Freyja ARTICv4 had a mean of 2.2 variants while Kallisto ARTICv4 had a mean of 10.1 variants). Conclusion: This work provides an understanding of the differences in performance of a number of VCEs and how accurate they are in capturing the relative abundance of SC2 variants within a mixed sample (e.g., wastewater). Such information should help officials gauge the confidence they can have in such data for informing public health decisions.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , Funções Verossimilhança , SARS-CoV-2/genética , Águas Residuárias
4.
Small ; 19(13): e2202104, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35618485

RESUMO

Engineering synthetic interfaces between membranes has potential applications in designing non-native cellular communication pathways and creating synthetic tissues. Here, InterSpy is introduced as a synthetic biology tool consisting of a heterodimeric protein engineered to form and maintain membrane-membrane interfaces between apposing synthetic as well as cell membranes through the SpyTag/SpyCatcher interaction. The inclusion of split fluorescent protein fragments in InterSpy allows tracking of the formation of a membrane-membrane interface and reconstitution of functional fluorescent protein in the space between apposing membranes. First, InterSpy is demonstrated by testing split protein designs using a mammalian cell-free expression (CFE) system. By utilizing co-translational helix insertion, cell-free synthesized InterSpy fragments are incorporated into the membrane of liposomes and supported lipid bilayers with the desired topology. Functional reconstitution of split fluorescent protein between the membranes is strictly dependent on SpyTag/SpyCatcher. Finally, InterSpy is demonstrated in mammalian cells by detecting fluorescence reconstitution of split protein at the membrane-membrane interface between two cells each expressing a component of InterSpy. InterSpy demonstrates the power of CFE systems in the functional reconstitution of synthetic membrane interfaces via proximity-inducing proteins. This technology may also prove useful where cell-cell contacts and communication are recreated in a controlled manner using minimal components.


Assuntos
Bicamadas Lipídicas , Lipossomos , Animais , Membrana Celular , Membranas , Processamento de Proteína Pós-Traducional , Corantes , Mamíferos
5.
Nat Commun ; 12(1): 874, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558533

RESUMO

Base-pairing interactions mediate many intermolecular target recognition events. Even a single base-pair mismatch can cause a substantial difference in activity but how such changes influence the target search kinetics in vivo is unknown. Here, we use high-throughput sequencing and quantitative super-resolution imaging to probe the mutants of bacterial small RNA, SgrS, and their regulation of ptsG mRNA target. Mutations that disrupt binding of a chaperone protein, Hfq, and are distal to the mRNA annealing region still decrease the rate of target association, kon, and increase the dissociation rate, koff, showing that Hfq directly facilitates sRNA-mRNA annealing in vivo. Single base-pair mismatches in the annealing region reduce kon by 24-31% and increase koff by 14-25%, extending the time it takes to find and destroy the target by about a third. The effects of disrupting contiguous base-pairing are much more modest than that expected from thermodynamics, suggesting that Hfq buffers base-pair disruptions.


Assuntos
Pareamento de Bases/genética , Estabilidade de RNA , RNA Bacteriano/genética , Sequência de Bases , Escherichia coli/genética , Dosagem de Genes , Genes Reporter , Imageamento Tridimensional , Cinética , Mutação/genética , Nucleotídeos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo
6.
Nature ; 589(7842): 462-467, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33328628

RESUMO

Mechanical deformations of DNA such as bending are ubiquitous and have been implicated in diverse cellular functions1. However, the lack of high-throughput tools to measure the mechanical properties of DNA has limited our understanding of how DNA mechanics influence chromatin transactions across the genome. Here we develop 'loop-seq'-a high-throughput assay to measure the propensity for DNA looping-and determine the intrinsic cyclizabilities of 270,806 50-base-pair DNA fragments that span Saccharomyces cerevisiae chromosome V, other genomic regions, and random sequences. We found sequence-encoded regions of unusually low bendability within nucleosome-depleted regions upstream of transcription start sites (TSSs). Low bendability of linker DNA inhibits nucleosome sliding into the linker by the chromatin remodeller INO80, which explains how INO80 can define nucleosome-depleted regions in the absence of other factors2. Chromosome-wide, nucleosomes were characterized by high DNA bendability near dyads and low bendability near linkers. This contrast increases for deeper gene-body nucleosomes but disappears after random substitution of synonymous codons, which suggests that the evolution of codon choice has been influenced by DNA mechanics around gene-body nucleosomes. Furthermore, we show that local DNA mechanics affect transcription through TSS-proximal nucleosomes. Overall, this genome-scale map of DNA mechanics indicates a 'mechanical code' with broad functional implications.


Assuntos
Fenômenos Biomecânicos , DNA Fúngico/química , DNA Fúngico/genética , Genoma Fúngico , Saccharomyces cerevisiae/genética , Montagem e Desmontagem da Cromatina , Códon/genética , DNA Fúngico/metabolismo , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Maleabilidade , Proteínas de Saccharomyces cerevisiae/metabolismo , Sítio de Iniciação de Transcrição
7.
Sci Rep ; 6: 38674, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27929049

RESUMO

Photoacoustic imaging is based on the detection of generated acoustic waves through thermal expansion of tissue illuminated by short laser pulses. Fiber lasers as an excitation source for photoacoustic imaging have recently been preferred for their high repetition frequencies. Here, we report a unique fiber laser developed specifically for multiwavelength photoacoustic microscopy system. The laser is custom-made for maximum flexibility in adjustment of its parameters; pulse duration (5-10 ns), pulse energy (up to 10 µJ) and repetition frequency (up to 1 MHz) independently from each other and covers a broad spectral region from 450 to 1100 nm and also can emit wavelengths of 532, 355, and 266 nm. The laser system consists of a master oscillator power amplifier, seeding two stages; supercontinuum and harmonic generation units. The laser is outstanding since the oscillator, amplifier and supercontinuum generation parts are all-fiber integrated with custom-developed electronics and software. To demonstrate the feasibility of the system, the images of several elements of standardized resolution test chart are acquired at multiple wavelengths. The lateral resolution of optical resolution photoacoustic microscopy system is determined as 2.68 µm. The developed system may pave the way for spectroscopic photoacoustic microscopy applications via widely tunable fiber laser technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...