Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteomics ; 267: 104700, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35995381

RESUMO

Human thyroglobulin (Tg), which has many glycosylation sites, is an essential protein produced by the human thyroid glands. Although human Tg N-glycans play critical roles in the cellular events of the Thyroid gland, the site-specific distribution of glycan structures has not been studied in detail. This study aimed to profile human Tg N-glycosylation sites and their glycan contents by using high-throughput glyco-analytical strategies, including glycopeptide and glycan levels. The sulfated complex and hybrid type N-glycan species were determined by the analysis of the human Tg samples with HPLC-HILIC-FLD-MS/MS. It was found that all fucosylated N-glycans carried fucose residue on their N-glycan core structure. The human Tg was digested with multiple enzymes by applying both in-gel and in-solution protocols to enhance site-specific glycosylation analysis. In total, 17 out of 20 N-glycosylation sites were characterized. It was noticed that 6 N-glycosylation sites contain only high-mannose type glycans, while other regions include complex and hybrid type glycans. In addition, sulfated glycoform structures were detected at the glycopeptide level in glycosylation sites containing complex and hybrid type glycans. It is expected that the results obtained from this study will contribute to functional studies to be conducted on human Tg protein. BIOLOGICAL SIGNIFICANCE: N-glycans of human thyroglobulin modulate thyroid hormone synthesis both in vivo and in vitro. Therefore, a comprehensive analysis of the N-glycosylation sites of human thyroglobulin is essential to improve our understanding of the function of its N-glycans. The present research significantly expanded the knowledge regarding N-glycosylation profiles of human thyroid thyroglobulin protein. For instance, as highlighted here, sulfated N-glycan structures were characterized using comprehensive glyco-analytical strategies. N-glycan patterns for the sites Asn110, Asn1869, and Asn2122 were described for the first time in this current work. In addition, N-glycan structures containing core-fucosylation and bisecting types were confirmed for all determined glycosylation sites.


Assuntos
Tireoglobulina , Glândula Tireoide , Glicopeptídeos/química , Glicosilação , Humanos , Polissacarídeos/química , Espectrometria de Massas em Tandem , Tireoglobulina/química , Tireoglobulina/metabolismo , Glândula Tireoide/metabolismo
2.
Plant Foods Hum Nutr ; 77(1): 51-61, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34850338

RESUMO

Morus nigra L. (black mulberry-BM) is a promising nutraceutical fruit containing biologically active polyphenols like anthocyanins, proanthocyanidins, catechins, and stilbenes, with well-established anti-inflammatory, antidiabetic, anti-obesity, and anticancer biofunctions. However, these health-promoting properties in raw fruit are greatly masked due to the presence of soluble and insoluble carbohydrates in excess amounts restricting daily intake of the required dose to achieve targeted effects. In the current study, different protein sources (defatted whey and chickpea flours) were optimized through different conditions to capture polyphenols from BM juice while diminishing its glucose content. To optimize polyphenol-protein interactions, various pHs (3.7, 4.2, and 4.7), matrix concentrations (20, 50, and 80 g protein/L), and incubation times (5, 20, and 45 min) were tested. In the present work, optimized BM polyphenol enriched whey matrix inhibited pro-inflammatory mediators and promoted Nrf-2 dependent cytoprotective enzyme expressions in lipopolysaccharide (LPS) induced macrophages at low doses. In addition, whey proteins were also subjected to an enzymatic deglycosylation process by using recently identified EndoBI-1 enzyme for the specific cleavage of N-glycan core in all glycan types including high mannoses, hybrids as well as complex glycans found on defatted whey proteins. After this process, the polyphenol sorption capacity of deglycosylated whey proteins was found to be significantly higher (37%) than the capacity of non-treated normal whey protein under optimized conditions. In conclusion, deglycosylation of protein matrices could be a novel strategy for efficient sorption/concentration of polyphenols from fruits and vegetables, however, more detailed studies are needed to understand this effect.


Assuntos
Cicer , Morus , Antocianinas/análise , Frutas/química , Polifenóis/análise , Soro do Leite/química , Proteínas do Soro do Leite
3.
Turk J Chem ; 46(5): 1524-1530, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37529735

RESUMO

Glycosylation is an essential posttranslational modification observed in the living proteome. Glycosylation profiles in glycoproteins can change in commonly observed diseases such as cancer. Identifying these changes is crucial in discovering new biomarkers for the early diagnosis of cancer. One of the main steps of N-glycan analysis is to release N-glycans from glycoproteins by specific enzymes. The study compares common denaturing agent combinations used in N-glycan release methods. In the study, human plasma was used to test the release methods of N-glycans containing different detergent combinations. The released N-glycans were labeled with the procainamide tag, purified using cellulose-containing solid-phase extraction cartridges, and analyzed by high-performance liquid chromatography-hydrophilic interaction liquid chromatography equipped with fluorescence detection (HPLC-HILIC-FLD). The results showed that the sodium dodecyl sulfate and sodium deoxycholate (SDS + SDC) detergent combination provided the highest average FLD signal areas and intensities in the N-glycan analysis. The protocol with SDS resulted in more reproducible average FLD signal areas and intensities. It was also found that the average signal FLD signal areas and intensities of the detected N-glycans were reduced when SDS and SDC were used with 1,4-dithiothreitol (DTT) reducing agents. In addition, deglycosylation of glycoproteins with various denaturing agents resulted in relatively minor variation in human plasma N-glycosylation profiles.

4.
Mol Cell Proteomics ; 17(6): 1225-1238, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29233911

RESUMO

Human C1-inhibitor (C1-Inh) is a serine protease inhibitor and the major regulator of the contact activation pathway as well as the classical and lectin complement pathways. It is known to be a highly glycosylated plasma glycoprotein. However, both the structural features and biological role of C1-Inh glycosylation are largely unknown. Here, we performed for the first time an in-depth site-specific N- and O-glycosylation analysis of C1-Inh combining various mass spectrometric approaches, including C18-porous graphitized carbon (PGC)-LC-ESI-QTOF-MS/MS applying stepping-energy collision-induced dissociation (CID) and electron-transfer dissociation (ETD). Various proteases were applied, partly in combination with PNGase F and exoglycosidase treatment, in order to analyze the (glyco)peptides. The analysis revealed an extensively O-glycosylated N-terminal region. Five novel and five known O-glycosylation sites were identified, carrying mainly core1-type O-glycans. In addition, we detected a heavily O-glycosylated portion spanning from Thr82-Ser121 with up to 16 O-glycans attached. Likewise, all known six N-glycosylation sites were covered and confirmed by this site-specific glycosylation analysis. The glycoforms were in accordance with results on released N-glycans by MALDI-TOF/TOF-MS/MS. The comprehensive characterization of C1-Inh glycosylation described in this study will form the basis for further functional studies on the role of these glycan modifications.


Assuntos
Proteína Inibidora do Complemento C1/metabolismo , Glicosilação , Humanos , Polissacarídeos/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
5.
Talanta ; 155: 78-86, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27216659

RESUMO

Hydrophobic silicon-based material having magnetic properties was fairly synthesized by a classical sol-gel approach. Pepsin enzyme was encapsulated in the sol-gel material and the enzyme activity was evaluated in consequence of the digestion of some common proteins such as α- and ß-casein, cytochrome c, myoglobin, and bovine serum albumin (BSA) both in a single protein batch and in the protein mixture. The optimum digestion time of the studied proteins using pepsin-encapsulated magnetic sol-gel material was found to be 20min. To produce the magnetic sol-gel material for convenient and easy proteomics applications, Fe3O4 was doped inside sol-gel material during the gelation step. It was observed that the activity of encapsulated pepsin was not affected by the amount of Fe3O4. Poly(ethylene glycol) was also inserted in sol-gel bulk to obtain suitable roughness and increase the hydrophilicity of the material surface to let protein molecules reach to the sol-gel material easily. The digestion of the protein mixture and non-fat bovine milk was performed with the pepsin-encapsulated magnetic sol-gel material and the digested solutions were analyzed using SDS-PAGE, MALDI-TOF-MS and LC-MS/MS for the protein identification. Reusability of the pepsin-encapsulated sol-gel material was examined and it was determined that they could be used at least 20 times. Finally, IgG digestions with a fast incubation time period were carried out using pepsin-encapsulated sol-gel material for generation of (Fab)2 product to evaluate the kinetic performance of the material.


Assuntos
Nanopartículas de Magnetita , Pepsina A/metabolismo , Proteólise , Proteômica/métodos , Sequência de Aminoácidos , Animais , Cápsulas , Bovinos , Géis , Espectrometria de Massas , Polietilenoglicóis/química , Fatores de Tempo
6.
Eur J Mass Spectrom (Chichester) ; 19(3): 151-62, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24308196

RESUMO

Several transition metal oxides, such as iron (III), nickel (II) and zirconium (IV) oxides, were examined in detail for the specific enrichment and the purification of phosphopeptides from a digested peptide mixture solution. Phosphopeptide enrichment was performed on the metal oxide particles using a peptide mixture obtained bytryptic digestion of beta-casein. The mixture of protein digests containing bovine serum albumin (BSA): beta-casein digests (100:1 mole ratio) was also used for the phosphopeptide enrichment. Furthermore, non-fat milk digest was examined as a complex biological sample. In each phosphopeptide enrichment process, phosphopeptides were specifically enriched and separated from the non-phosphopeptides. The phosphopeptides were adsorbed onto the metal oxide surface at acidic pH values between 1.0 and 2.0 and, for desorption of phosphopeptides from metal oxide particles, pH values were examined and optimized in the enrichment studies. The analysis of phosphopeptides were carried out by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) using 2,5-dihydroxybenzoic acid matrix containing 1.0% phosphoric acid to obtain intense protonated signals and to overcome degradation of the phosphopeptides by phosphate group loss in mass spectrometric conditions. Moreover, it was demonstrated that the direct detection of phosphopeptides from the surface of the metal oxide particles was possible using MALDI-MS by mixing the phosphopeptide-adsorbed metal oxide particles with MALDI matrix solution in slurry form before the analysis. Thus, the effects of interferences arising from chemical species used in the desorption process was successfully eliminated for the fast and sensitive detection of phosphopeptides in MALDI-MS applications.


Assuntos
Compostos Férricos/química , Leite/química , Níquel/química , Fosfopeptídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Zircônio/química , Sequência de Aminoácidos , Animais , Caseínas/química , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Fosfopeptídeos/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...