Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 226: 119251, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36288666

RESUMO

Greenhouse gas (GHG) emissions from small inland waters are disproportionately large. Climate warming is expected to favor dominance of algae and free-floating plants at the expense of submerged plants. Through different routes these functional plant types may have far-reaching impacts on freshwater GHG emissions in future warmer waters, which are yet unknown. We conducted a 1,000 L mesocosm experiment testing the effects of plant type and warming on GHG emissions from temperate inland waters dominated by either algae, free-floating or submerged plants in controls and warmed (+4 °C) treatments for one year each. Our results show that the effect of experimental warming on GHG fluxes differs between dominance of different functional plant types, mainly by modulating methane ebullition, an often-dominant GHG emission pathway. Specifically, we demonstrate that the response to experimental warming was strongest for free-floating and lowest for submerged plant-dominated systems. Importantly, our results suggest that anticipated shifts in plant type from submerged plants to a dominance of algae or free-floating plants with warming may increase total GHG emissions from shallow waters. This, together with a warming-induced emission response, represents a so far overlooked positive climate feedback. Management strategies aimed at favouring submerged plant dominance may thus substantially mitigate GHG emissions.


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Efeito Estufa , Temperatura , Óxido Nitroso/análise , Dióxido de Carbono , Metano/análise , Solo
2.
Glob Chang Biol ; 24(11): 5231-5242, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30120802

RESUMO

Temperatures have been rising throughout recent decades and are predicted to rise further in the coming century. Global warming affects carbon cycling in freshwater ecosystems, which both emit and bury substantial amounts of carbon on a global scale. Currently, most studies focus on the effect of warming on overall carbon emissions from freshwater ecosystems, while net effects on carbon budgets may strongly depend on burial in sediments. Here, we tested whether year-round warming increases the production, sedimentation, or decomposition of particulate organic carbon and eventually alters the carbon burial in a typical shallow freshwater system. We performed an indoor experiment in eight mesocosms dominated by the common submerged aquatic plant Myriophyllum spicatum testing two temperature treatments: a temperate seasonal temperature control and a warmed (+4°C) treatment (n = 4). During a full experimental year, the carbon stock in plant biomass, dissolved organic carbon in the water column, sedimented organic matter, and decomposition of plant detritus were measured. Our results showed that year-round warming nearly doubled the final carbon stock in plant biomass from 6.9 ± 1.1 g C in the control treatment to 12.8 ± 0.6 g C (mean ± SE), mainly due to a prolonged growing season in autumn. DOC concentrations did not differ between the treatments, but organic carbon sedimentation increased by 60% from 96 ± 9.6 to 152 ± 16 g C m-2  yaer-1 (mean ± SE) from control to warm treatments. Enhanced decomposition of plant detritus in the warm treatment, however, compensated for the increased sedimentation. As a result, net carbon burial was 40 ± 5.7 g C m-2  year-1 in both temperature treatments when fluxes were combined into a carbon budget model. These results indicate that warming can increase the turnover of organic carbon in shallow macrophyte-dominated systems, while not necessarily affecting net carbon burial on a system scale.


Assuntos
Ciclo do Carbono , Sequestro de Carbono , Água Doce/química , Aquecimento Global , Biomassa , Carbono , Ecossistema , Saxifragales/fisiologia , Estações do Ano , Temperatura
3.
Sci Rep ; 8(1): 9901, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29967408

RESUMO

Global warming profoundly impacts the functioning of aquatic ecosystems. Nonetheless, the effect of warming on primary producers is poorly understood, especially periphyton production, which is affected both directly and indirectly by temperature-sensitive top-down and bottom-up controls. Here, we study the impact of warming on gross primary production in experimental ecosystems with near-realistic foodwebs during spring and early summer. We used indoor mesocosms following a temperate temperature regime (control) and a warmed (+4 °C) treatment to measure biomass and production of phytoplankton and periphyton. The mesocosms' primary production was dominated by periphyton (>82%) during the studied period (April-June). Until May, periphyton production and biomass were significantly higher in the warm treatment (up to 98% greater biomass compared to the control) due to direct temperature effects on growth and indirect effects resulting from higher sediment phosphorus release. Subsequently, enhanced grazer abundances seem to have counteracted the positive temperature effect causing a decline in periphyton biomass and production in June. We thus show, within our studied period, seasonally distinct effects of warming on periphyton, which can significantly affect overall ecosystem primary production and functioning.

4.
Nat Commun ; 8(1): 1682, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29167452

RESUMO

Methane (CH4) strongly contributes to observed global warming. As natural CH4 emissions mainly originate from wet ecosystems, it is important to unravel how climate change may affect these emissions. This is especially true for ebullition (bubble flux from sediments), a pathway that has long been underestimated but generally dominates emissions. Here we show a remarkably strong relationship between CH4 ebullition and temperature across a wide range of freshwater ecosystems on different continents using multi-seasonal CH4 ebullition data from the literature. As these temperature-ebullition relationships may have been affected by seasonal variation in organic matter availability, we also conducted a controlled year-round mesocosm experiment. Here 4 °C warming led to 51% higher total annual CH4 ebullition, while diffusion was not affected. Our combined findings suggest that global warming will strongly enhance freshwater CH4 emissions through a disproportional increase in ebullition (6-20% per 1 °C increase), contributing to global warming.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...