Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37688125

RESUMO

The aim of this study was to develop a novel amikacin (AMI) delivery system with prolonged release based on composite electrospun nanofibers of PLA supplemented with AMI-loaded Si nanoparticles of different morphology. The resultant materials were characterized in terms of their physical properties (scanning electron microscopy, Brunauer-Emmett-Teller analysis, thermogravimetric analysis, water contact angle). High-Performance Liquid Chromatography was used to determine the AMI content in the liquid fractions obtained from the release study. The results show that nanofibers of fumed silica exhibited an aggregated, highly porous structure, whereas nanofibers of mesoporous silica had a spherical morphology. Both silica nanoparticles had a significant effect on the hydrophilic properties of PLA nanofiber surfaces. The liquid fractions were investigated to gauge the encapsulation efficiency (EE) and loading efficiency (LE) of AMI, demonstrating 66% EE and 52% LE for nanofibers of fumed silica compared to nanofibers of mesoporous silica nanoparticles (52% EE and 12.7% LE). The antibacterial activity of the AMI-loaded nanofibers was determined by the Kirby-Bauer Method. These results demonstrated that the PLA-based silica nanofibers effectively enhanced the antibacterial properties against the Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae.

2.
Molecules ; 28(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36838712

RESUMO

Whey protein isolate (WPI), employed as a carrier for a wide range of bioactive substances, suffers from a lack of colloidal stability in physiological conditions. Herein, we developed innovative stabilized PolyElectrolyte Nanoparticles (PENs) obtained by two techniques: polyelectrolyte complexation of negatively charged WPI and positively charged chitosan (CS), and ionic gelation in the presence of polyanion tripolyphosphate (TPP). Therefore, the WPI-based core was coated with a CS-based shell and then stabilized by TPP at pH 8. The nanostructures were characterized by physiochemical methods, and their encapsulation efficiency and in vitro release were evaluated. The spherical NPs with an average size of 248.57 ± 5.00 nm and surface charge of +10.80 ± 0.43 mV demonstrated high encapsulation efficiency (92.79 ± 0.69) and sustained release of a positively charged chemotherapeutic agent such as doxorubicin (DOX). Z-average size and size distribution also presented negligible increases in size and aggregates during the three weeks. The results obtained confirm the effectiveness of the simultaneous application of these methods to improve the colloidal stability of PEN.


Assuntos
Quitosana , Nanopartículas , Quitosana/química , Proteínas do Soro do Leite , Polieletrólitos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Portadores de Fármacos/química , Tamanho da Partícula
3.
Materials (Basel) ; 17(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38204007

RESUMO

Hybrid organic/inorganic conducting and magnetic composites of core-shell type have been prepared by in-situ coating of nickel microparticles with polypyrrole. Three series of syntheses have been made. In the first, pyrrole was oxidised with ammonium peroxydisulfate in water in the presence of various amounts of nickel and the composites contained up to 83 wt% of this metal. The second series used 0.1 M sulfuric acid as a reaction medium. Finally, the composites with polypyrrole nanotubes were prepared in water in the presence of structure-guiding methyl orange dye. The nanotubes have always been accompanied by the globular morphology. FTIR and Raman spectroscopies confirmed the formation of polypyrrole. The resistivity of composite powders of the order of tens to hundreds Ω cm was monitored as a function of pressure up to 10 MPa. The resistivity of composites slightly increased with increasing content of nickel. This apparent paradox is explained by the coating of nickel particles with polypyrrole, which prevents their contact and subsequent generation of metallic conducting pathways. Electrical properties were practically independent of the way of composite preparation or nickel content and were controlled by the polypyrrole phase. On the contrary, magnetic properties were determined exclusively by nickel content. The composites were used as a solid phase to prepare a magnetorheological fluid. The test showed better performance when compared with a different nickel system reported earlier.

4.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35163385

RESUMO

The electrochemical parameters of a novel binder-free self-standing biomimetic cathode based on lithium manganese oxide (LMO) and carbon nanotubes (CNT) for rechargeable Lithium-ion aqueous batteries (ReLIAB) are improved using polyaniline (PANI) core-shell in situ polymerization and graphene (Gr). The fabricated cathode material exhibits the so-called "tectonic plate island bridge" biomimetic structure. This constitution is created by combining three components as shown by a SEM and a TEM analysis: the Gr substrates support an entangled matrix of conductive CNT which connect island of non-conductive inorganic material composed of LMO. The typical spinel structure of the LMO remains unchanged after modifying the basic structure with Gr and PANI due to a simplified hydrothermal method used for synthesis. The Gr and PANI core-shell coating improves the electric conductivity from 0.0025 S/cm up to 1 S/cm. The electrochemical performances of the LMO/CNT-Gr/PANI composite electrode are optimized up to 136 mA h g-1 compared to 111 mA h g-1 of the LMO/CNT. Besides that, the new electrode shows good cycling stability after 200 galvanostatic charging/discharging cycles, making this structure a future candidate for cathode materials for ReLIAB.


Assuntos
Compostos de Anilina/química , Materiais Biomiméticos/química , Condutividade Elétrica , Fontes de Energia Elétrica , Grafite/química , Lítio/química , Manganês/química , Nanotubos de Carbono/química , Óxidos/química , Água/química , Espectroscopia Dielétrica , Técnicas Eletroquímicas , Eletrodos , Espectroscopia Fotoeletrônica
5.
Sci Rep ; 12(1): 664, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027598

RESUMO

Benzendicarboxylic acid (BDC)-based metal-organic frameworks (MOFs) have been widely utilized in various applications, including supercapacitor electrode materials. Manganese and copper have solid diamond frames formed with BDC linkers among transition metals chosen for MOF formation. They have shown the possibility to enlarge capacitance at different combinations of MOFs and polyaniline (PANI). Herein, reduced graphene oxide (rGO) was used as the matrix to fabricate electrochemical double-layer SCs. PANI and Mn/Cu-MOF's effect on the properties of electrode materials was investigated through electrochemical analysis. As a result, the highest specific capacitance of about 276 F/g at a current density of 0.5 A/g was obtained for rGO/Cu-MOF@PANI composite.

6.
Nanomaterials (Basel) ; 11(12)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34947751

RESUMO

Magnetic hyperthermia (MH), proposed by R. K. Gilchrist in the middle of the last century as local hyperthermia, has nowadays become a recognized method for minimally invasive treatment of oncological diseases in combination with chemotherapy (ChT) and radiotherapy (RT). One type of MH is arterial embolization hyperthermia (AEH), intended for the presurgical treatment of primary inoperable and metastasized solid tumors of parenchymal organs. This method is based on hyperthermia after transcatheter arterial embolization of the tumor's vascular system with a mixture of magnetic particles and embolic agents. An important advantage of AEH lies in the double effect of embolotherapy, which blocks blood flow in the tumor, and MH, which eradicates cancer cells. Consequently, only the tumor undergoes thermal destruction. This review introduces the progress in the development of polymeric magnetic materials for application in AEH.

7.
Nanomaterials (Basel) ; 9(4)2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30987112

RESUMO

In this work, a facile two-step strategy is adopted to construct hierarchical polyaniline/NiCo-layered double hydroxide (PANI/NiCo-LDH) core-shell composite nanofiber networks on carbon cloth (CC). Three-dimensional (3D) porous PANI nanofiber networks are firstly uniformly anchored on CC by in-situ oxidative polymerization, followed by growth of NiCo-LDH nanoflakes on the crosslinked PANI framework via electrochemical deposition. The morphology and electrochemical properties of PANI/NiCo-LDH composites are controlled by the deposition time of LDH. Benefiting from rapid electron transport and ion diffusion, the well-defined PANI/NiCo-LDH hierarchical composite with 200 s deposition of LDH delivers a large capacitance of 1845 F g-1 at 0.5 A g-1 and excellent cycling stability of 82% capacitance retention after 5000 cycles at a very high current density of 10.0 A g-1. Furthermore, an asymmetric supercapacitor (ASC) assembled with PANI/NiCo-LDH as a positive electrode and activated carbon (AC) as a negative electrode exhibits a high capacitance of 147.2 F g-1 in a potential range from 0 to 1.5 V and superior energy density of 46.0 Wh kg-1 at a power density of 351.6 W kg-1.

8.
Materials (Basel) ; 10(11)2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29084177

RESUMO

The flexible supercapacitors (SCs) of the conventional sandwich-type structure have poor flexibility due to the large thickness of the final entire device. Herein, we have fabricated a highly flexible asymmetric SC using manganese dioxide (MnO2) and reduced graphene oxide (RGO) nanosheet-piled hydrogel films and a novel bacterial cellulose (BC)-filled polyacrylic acid sodium salt-Na2SO4 (BC/PAAS-Na2SO4) neutral gel electrolyte. Apart from being environmentally friendly, this BC/PAAS-Na2SO4 gel electrolyte has high viscosity and a sticky property, which enables it to combine two electrodes together. Meanwhile, the intertangling of the filled BC in the gel electrolyte hinders the decrease of the viscosity with temperature, and forms a separator to prevent the two electrodes from short-circuiting. Using these materials, the total thickness of the fabricated device does not exceed 120 µm. This SC device demonstrates high flexibility, where bending and even rolling have no obvious effect on the electrochemical performance. In addition, owing to the asymmetric configuration, the cell voltage of this flexible SC has been extended to 1.8 V, and the energy density can reach up to 11.7 Wh kg-1 at the power density of 441 W kg-1. This SC also exhibits a good cycling stability, with a capacitance retention of 85.5% over 5000 cycles.

9.
Mater Sci Eng C Mater Biol Appl ; 48: 632-41, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25579966

RESUMO

Maghemite nanoparticle based silicone composite for application in arterial embolization hyperthermia is developed. It possesses embolization ability, high heating efficiency in alternating magnetic fields and radiopaque property. The initial components of the composite are selected so that the material stays liquid for 20min, providing the opportunity for transcatheter transportation and filling of the tumour vascular system. After this induction period the viscosity increases rapidly and soft embolus is formed which is able to occlude the tumour blood vessels. The composite is thermally stable up to 225°C, displays rubber-elastic properties and has a thermal expansion coefficient higher than that of blood. Maghemite nanoparticles uniformly distributed in the composite provide its rapid heating (tens of °Cmin(-1)) due to Neel magnetization relaxation. Required X-ray contrast of composite is achieved by addition of potassium iodide.


Assuntos
Embolização Terapêutica , Compostos Férricos/química , Hipertermia Induzida , Campos Magnéticos , Nanocompostos/química , Silicones/química , Animais , Elasticidade , Humanos , Iodeto de Potássio/química
10.
Molecules ; 17(11): 13157-74, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23128093

RESUMO

The effect of ionic surfactants and manufacturing methods on the separation and distribution of multi-wall carbon nanotubes (CNTs) in a silicone matrix are investigated. The CNTs are dispersed in an aqueous solution of the anionic surfactant dodecylbenzene sulfonic acid (DBSA), the cationic surfactant cetyltrimethylammonium bromide (CTAB), and in a DBSA/CTAB surfactant mixture. Four types of CNT-based composites of various concentrations from 0 to 6 vol.% are prepared by simple mechanical mixing and sonication. The morphology, electrical and thermal conductivity of the CNT-based composites are analyzed. The incorporation of both neat and modified CNTs leads to an increase in electrical and thermal conductivity. The dependence of DC conductivity versus CNT concentration shows percolation behaviour with a percolation threshold of about 2 vol.% in composites with neat CNT. The modification of CNTs by DBSA increases the percolation threshold to 4 vol.% due to the isolation/separation of individual CNTs. This, in turn, results in a significant decrease in the complex permittivity of CNT–DBSA-based composites. In contrast to the percolation behaviour of DC conductivity, the concentration dependence of thermal conductivity exhibits a linear dependence, the thermal conductivity of composites with modified CNTs being lower than that of composites with neat CNTs. All these results provide evidence that the modification of CNTs by DBSA followed by sonication allows one to produce composites with high homogeneity.


Assuntos
Condutividade Elétrica , Nanocompostos/química , Nanotubos de Carbono/química , Elastômeros de Silicone/química , Tensoativos/química , Condutividade Térmica , Benzenossulfonatos/química , Cetrimônio , Compostos de Cetrimônio/química , Espectroscopia Dielétrica , Nanocompostos/ultraestrutura , Nanotubos de Carbono/ultraestrutura , Sonicação , Termogravimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...