Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(3)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36986652

RESUMO

Τhe synthesis of a series of novel hybrid block copolypeptides based on poly(ethylene oxide) (PEO), poly(l-histidine) (PHis) and poly(l-cysteine) (PCys) is presented. The synthesis of the terpolymers was achieved through a ring-opening polymerization (ROP) of the corresponding protected N-carboxy anhydrides of Nim-Trityl-l-histidine and S-tert-butyl-l-cysteine, using an end-amine-functionalized poly(ethylene oxide) (mPEO-NH2) as macroinitiator, followed by the deprotection of the polypeptidic blocks. The topology of PCys was either the middle block, the end block or was randomly distributed along the PHis chain. These amphiphilic hybrid copolypeptides assemble in aqueous media to form micellar structures, comprised of an outer hydrophilic corona of PEO chains, and a pH- and redox-responsive hydrophobic layer based on PHis and PCys. Due to the presence of the thiol groups of PCys, a crosslinking process was achieved further stabilizing the nanoparticles (NPs) formed. Dynamic light scattering (DLS), static light scattering (SLS) and transmission electron microscopy (TEM) were utilized to obtain the structure of the NPs. Moreover, the pH and redox responsiveness in the presence of the reductive tripeptide of glutathione (GSH) was investigated at the empty as well as the loaded NPs. The ability of the synthesized polymers to mimic natural proteins was examined by Circular Dichroism (CD), while the study of zeta potential revealed the "stealth" properties of NPs. The anticancer drug doxorubicin (DOX) was efficiently encapsulated in the hydrophobic core of the nanostructures and released under pH and redox conditions that simulate the healthy and cancer tissue environment. It was found that the topology of PCys significantly altered the structure as well as the release profile of the NPs. Finally, in vitro cytotoxicity assay of the DOX-loaded NPs against three different breast cancer cell lines showed that the nanocarriers exhibited similar or slightly better activity as compared to the free drug, rendering these novel NPs very promising materials for drug delivery applications.

2.
Regen Biomater ; 5(5): 293-301, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30338127

RESUMO

Hydrogels have been extensively used in the field of biomedical applications, offering customizable natural, synthetic or hybrid materials, particularly relevant in the field of tissue engineering. In the bioelectronics discipline, hydrogels are promising mainly as sensing platforms with or without encapsulated cells, showing great potential in healthcare and medicine. However, to date there is little data in the literature which characterizes the electrical properties of tissue engineering materials which are relevant to bioelectronics. In this work, we present electrical characterization of alginate hydrogels, a natural polysaccharide, using a four-probe method similar to electrical impedance spectroscopy. The acquired conductance data show distinct frequency-dependent features that change as a function of alginate and crosslinker concentration reflecting ion kinetics inside the measured sample. Furthermore, the presence of NIH 3T3 fibroblasts encapsulated in the hydrogels matrix was found to alter the artificial tissue's electrical properties. The method used provides valuable insight to the frequency-dependent electrical response of the resulting systems. It is hoped that the outcome of this research will be of use in the development of cell/electronic interfaces, possibly toward diagnostic biosensors and therapeutic bioelectronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...