Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 11(12)2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34550356

RESUMO

Maternal embryonic leucine zipper kinase (MELK) is frequently overexpressed in cancer, but the role of MELK in cancer is still poorly understood. MELK was shown to have roles in many cancer-associated processes including tumor growth, chemotherapy resistance, and tumor recurrence. To determine whether the frequent overexpression of MELK can be exploited in therapy, we performed a high-throughput screen using a library of Saccharomyces cerevisiae mutants to identify genes whose functions become essential when MELK is overexpressed. We identified two such genes: LAG2 and HDA3. LAG2 encodes an inhibitor of the Skp, Cullin, F-box containing (SCF) ubiquitin-ligase complex, while HDA3 encodes a subunit of the HDA1 histone deacetylase complex. We find that one of these synthetic lethal interactions is conserved in mammalian cells, as inhibition of a human homolog of HDA3 (Histone Deacetylase 4, HDAC4) is synthetically toxic in MELK overexpression cells. Altogether, our work identified a novel potential drug target for tumors that overexpress MELK.


Assuntos
Neoplasias , Proteínas de Saccharomyces cerevisiae , Animais , Linhagem Celular Tumoral , Proliferação de Células , Histona Desacetilases/genética , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas Serina-Treonina Quinases , Proteínas Repressoras , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
2.
Aging Cell ; 19(2): e13084, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31854076

RESUMO

To ensure proper transmission of genetic information, cells need to preserve and faithfully replicate their genome, and failure to do so leads to genome instability, a hallmark of both cancer and aging. Defects in genes involved in guarding genome stability cause several human progeroid syndromes, and an age-dependent accumulation of mutations has been observed in different organisms, from yeast to mammals. However, it is unclear whether the spontaneous mutation rate changes during aging and whether specific pathways are important for genome maintenance in old cells. We developed a high-throughput replica-pinning approach to screen for genes important to suppress the accumulation of spontaneous mutations during yeast replicative aging. We found 13 known mutation suppression genes, and 31 genes that had no previous link to spontaneous mutagenesis, and all acted independently of age. Importantly, we identified PEX19, encoding an evolutionarily conserved peroxisome biogenesis factor, as an age-specific mutation suppression gene. While wild-type and pex19Δ young cells have similar spontaneous mutation rates, aged cells lacking PEX19 display an elevated mutation rate. This finding suggests that functional peroxisomes may be important to preserve genome integrity specifically in old cells.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/genética , Senescência Celular/genética , Instabilidade Genômica/genética , Proteínas de Membrana/genética , Taxa de Mutação , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Replicação do DNA/genética , Endonucleases Flap/genética , Ontologia Genética , Técnicas Genéticas , Mutagênese , Mutação , Acúmulo de Mutações , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Saccharomyces cerevisiae/fisiologia , Endonucleases Específicas para DNA e RNA de Cadeia Simples/genética
3.
Nat Commun ; 10(1): 3515, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31383866

RESUMO

Accurate DNA replication is essential for genomic stability and cancer prevention. Homologous recombination is important for high-fidelity DNA damage tolerance during replication. How the homologous recombination machinery is recruited to replication intermediates is unknown. Here, we provide evidence that a Rad51 paralog-containing complex, the budding yeast Shu complex, directly recognizes and enables tolerance of predominantly lagging strand abasic sites. We show that the Shu complex becomes chromatin associated when cells accumulate abasic sites during S phase. We also demonstrate that purified recombinant Shu complex recognizes an abasic analog on a double-flap substrate, which prevents AP endonuclease activity and endonuclease-induced double-strand break formation. Shu complex DNA binding mutants are sensitive to methyl methanesulfonate, are not chromatin enriched, and exhibit increased mutation rates. We propose a role for the Shu complex in recognizing abasic sites at replication intermediates, where it recruits the homologous recombination machinery to mediate strand specific damage tolerance.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/metabolismo , Reparo de DNA por Recombinação , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Cromatina/genética , Cromatina/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Proteínas de Ligação a DNA/genética , Fase S/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
4.
Nat Commun ; 10(1): 2421, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160600

RESUMO

Translation efficiency can be affected by mRNA stability and secondary structures, including G-quadruplex structures (G4s). The highly conserved DEAH-box helicase DHX36/RHAU resolves G4s on DNA and RNA in vitro, however a systems-wide analysis of DHX36 targets and function is lacking. We map globally DHX36 binding to RNA in human cell lines and find it preferentially interacting with G-rich and G4-forming sequences on more than 4500 mRNAs. While DHX36 knockout (KO) results in a significant increase in target mRNA abundance, ribosome occupancy and protein output from these targets decrease, suggesting that they were rendered translationally incompetent. Considering that DHX36 targets, harboring G4s, preferentially localize in stress granules, and that DHX36 KO results in increased SG formation and protein kinase R (PKR/EIF2AK2) phosphorylation, we speculate that DHX36 is involved in resolution of rG4 induced cellular stress.


Assuntos
RNA Helicases DEAD-box/metabolismo , Quadruplex G , RNA Mensageiro/metabolismo , Regiões não Traduzidas , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Fosforilação , Biossíntese de Proteínas , Ribossomos/metabolismo , Estresse Fisiológico , eIF-2 Quinase/metabolismo
5.
Nucleic Acids Res ; 45(10): 5913-5919, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28449085

RESUMO

Previously we reported the production and characterization of monoclonal antibody 1H6 raised against (T4G4)2 intermolecular guanine quadruplex (G4) DNA structures (Henderson A. et al. (2014) Nucleic Acids Res., 42, 860-869; Hoffmann R.F. et al. (2016) Nucleic Acids Res., 44, 152-163). It was shown that 1H6 strongly stains nuclei and has exquisite specificity for heterochromatin by immuno-electron microscopy. Here we extend our studies of 1H6 reactivity using enzyme-linked immunosorbent assay (ELISA) and microscale thermophoresis (MST). As previously reported, 1H6 was found to strongly bind intermolecular G4 structures with a (T4G4)2 sequence motif. However, using both methods we did not detect significant binding to G4 structures without thymidines in their sequence motif or to G4 structures made with (T2G4)2 oligonucleotides. In addition, we observed strong, sequence-specific binding of 1H6 by ELISA to immobilized single stranded poly(T) DNA but not to immobilized poly(C) or poly(A) homo-polymers. Cross-reactivity of 1H6 to poly(T) was not measured in solution using MST. 1H6 was furthermore found to bind to selected areas on DNA fibers but only after DNA denaturation. Based on these observations we propose that 1H6 binds with high affinity to adjacent T's that are restricted in their movement in selected G4 structures and denatured DNA. Cross-reactivity of 1H6 to immobilized single stranded T-rich DNA next to its previously reported specificity for bona fide G4 structures needs to be taken into account in the interpretation of 1H6 binding to (sub-) cellular structures.


Assuntos
Anticorpos Monoclonais/química , DNA de Cadeia Simples/metabolismo , Quadruplex G , Guanina/metabolismo , Timidina/metabolismo , Animais , Anticorpos Monoclonais/biossíntese , Afinidade de Anticorpos , Especificidade de Anticorpos , Reações Cruzadas , DNA de Cadeia Simples/química , Ensaio de Imunoadsorção Enzimática , Células HEK293 , Heterocromatina/química , Heterocromatina/metabolismo , Humanos , Cinética , Camundongos , Microscopia Imunoeletrônica , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Ligação Proteica
6.
Cell Rep ; 18(12): 2979-2990, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28329689

RESUMO

The CCHC-type zinc finger nucleic acid-binding protein (CNBP/ZNF9) is conserved in eukaryotes and is essential for embryonic development in mammals. It has been implicated in transcriptional, as well as post-transcriptional, gene regulation; however, its nucleic acid ligands and molecular function remain elusive. Here, we use multiple systems-wide approaches to identify CNBP targets and function. We used photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) to identify 8,420 CNBP binding sites on 4,178 mRNAs. CNBP preferentially bound G-rich elements in the target mRNA coding sequences, most of which were previously found to form G-quadruplex and other stable structures in vitro. Functional analyses, including RNA sequencing, ribosome profiling, and quantitative mass spectrometry, revealed that CNBP binding did not influence target mRNA abundance but rather increased their translational efficiency. Considering that CNBP binding prevented G-quadruplex structure formation in vitro, we hypothesize that CNBP is supporting translation by resolving stable structures on mRNAs.


Assuntos
Quadruplex G , Fases de Leitura Aberta/genética , Biossíntese de Proteínas/genética , Proteínas de Ligação a RNA/metabolismo , Dedos de Zinco , Sequência de Aminoácidos , Sequência de Bases , Células HEK293 , Humanos , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Ribossomos/metabolismo
8.
Genome Biol ; 17(1): 115, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27246460

RESUMO

BACKGROUND: Chromosome instability leads to aneuploidy, a state in which cells have abnormal numbers of chromosomes, and is found in two out of three cancers. In a chromosomal instable p53 deficient mouse model with accelerated lymphomagenesis, we previously observed whole chromosome copy number changes affecting all lymphoma cells. This suggests that chromosome instability is somehow suppressed in the aneuploid lymphomas or that selection for frequently lost/gained chromosomes out-competes the CIN-imposed mis-segregation. RESULTS: To distinguish between these explanations and to examine karyotype dynamics in chromosome instable lymphoma, we use a newly developed single-cell whole genome sequencing (scWGS) platform that provides a complete and unbiased overview of copy number variations (CNV) in individual cells. To analyse these scWGS data, we develop AneuFinder, which allows annotation of copy number changes in a fully automated fashion and quantification of CNV heterogeneity between cells. Single-cell sequencing and AneuFinder analysis reveals high levels of copy number heterogeneity in chromosome instability-driven murine T-cell lymphoma samples, indicating ongoing chromosome instability. Application of this technology to human B cell leukaemias reveals different levels of karyotype heterogeneity in these cancers. CONCLUSION: Our data show that even though aneuploid tumours select for particular and recurring chromosome combinations, single-cell analysis using AneuFinder reveals copy number heterogeneity. This suggests ongoing chromosome instability that other platforms fail to detect. As chromosome instability might drive tumour evolution, karyotype analysis using single-cell sequencing technology could become an essential tool for cancer treatment stratification.


Assuntos
Heterogeneidade Genética , Cariótipo , Neoplasias/genética , Análise de Célula Única , Aneuploidia , Animais , Instabilidade Cromossômica , Aberrações Cromossômicas , Hibridização Genômica Comparativa , Biologia Computacional , Variações do Número de Cópias de DNA , Humanos , Camundongos , Camundongos Knockout , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Análise de Célula Única/métodos , Software
9.
Genome Biol ; 17(1): 116, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27246599

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disease of the brain and the most common form of dementia in the elderly. Aneuploidy, a state in which cells have an abnormal number of chromosomes, has been proposed to play a role in neurodegeneration in AD patients. Several studies using fluorescence in situ hybridization have shown that the brains of AD patients contain an increased number of aneuploid cells. However, because the reported rate of aneuploidy in neurons ranges widely, a more sensitive method is needed to establish a possible role of aneuploidy in AD pathology. RESULTS: In the current study, we used a novel single-cell whole genome sequencing (scWGS) approach to assess aneuploidy in isolated neurons from the frontal cortex of normal control individuals (n = 6) and patients with AD (n = 10). The sensitivity and specificity of our method was shown by the presence of three copies of chromosome 21 in all analyzed neuronal nuclei of a Down's syndrome sample (n = 36). Very low levels of aneuploidy were found in the brains from control individuals (n = 589) and AD patients (n = 893). In contrast to other studies, we observe no selective gain of chromosomes 17 or 21 in neurons of AD patients. CONCLUSION: scWGS showed no evidence for common aneuploidy in normal and AD neurons. Therefore, our results do not support an important role for aneuploidy in neuronal cells in the pathogenesis of AD. This will need to be confirmed by future studies in larger cohorts.


Assuntos
Doença de Alzheimer/genética , Aneuploidia , Genoma Humano/genética , Neurônios/metabolismo , Análise de Sequência de DNA/métodos , Análise de Célula Única/métodos , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios/patologia
10.
ACS Chem Biol ; 9(4): 1044-51, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24527883

RESUMO

Iron complexes of N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)-methylamine (N4Py) have proven to be excellent synthetic mimics of the Bleomycins (BLMs), which are a family of natural antibiotics used clinically in the treatment of certain cancers. However, most investigations of DNA cleavage activity of these and related metal complexes were carried out in cell-free systems using plasmid DNA as substrate. The present study evaluated nuclear DNA cleavage activity and cell cytotoxicity of BLM and its synthetic mimics based on the ligand N4Py. The N4Py-based reagents induced nuclear DNA cleavage in living cells as efficiently as BLM and Fe(II)-BLM. Treatment of 2 cancer cell lines and 1 noncancerous cell line indicated improved cytotoxicity of N4Py when compared to BLM. Moreover, some level of selectivity was observed for N4Py on cancerous versus noncancerous cells. It was demonstrated that N4Py-based reagents and BLM induce cell death via different mechanistic pathways. BLM was shown to induce cell cycle arrest, ultimately resulting in mitotic catastrophe. In contrast, N4Py-based reagents were shown to induce apoptosis effectively. To the best of our knowledge, the present study is the first demonstration of efficient nuclear DNA cleavage activity of a synthetic BLM mimic within cells. The results presented here show that it is possible to design synthetic bioinorganic model complexes that are at least as active as the parent natural product and thereby are potentially interesting alternatives for BLM to induce antitumor activity.


Assuntos
Biomimética , Bleomicina/farmacologia , Clivagem do DNA , DNA/efeitos dos fármacos , Apoptose , Bleomicina/síntese química , Bleomicina/química , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , DNA/química , Humanos , Estrutura Molecular , Neoplasias/tratamento farmacológico
11.
Nucleic Acids Res ; 42(3): 1563-74, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24194590

RESUMO

Increasing evidence indicates that active DNA demethylation is involved in several processes in mammals, resulting in developmental stage-specificity and cell lineage-specificity. The recently discovered Ten-Eleven Translocation (TET) dioxygenases are accepted to be involved in DNA demethylation by initiating 5-mC oxidation. Aberrant DNA methylation profiles are associated with many diseases. For example in cancer, hypermethylation results in silencing of tumor suppressor genes. Such silenced genes can be re-expressed by epigenetic drugs, but this approach has genome-wide effects. In this study, fusions of designer DNA binding domains to TET dioxygenase family members (TET1, -2 or -3) were engineered to target epigenetically silenced genes (ICAM-1, EpCAM). The effects on targeted CpGs' methylation and on expression levels of the target genes were assessed. The results indicated demethylation of targeted CpG sites in both promoters for targeted TET2 and to a lesser extent for TET1, but not for TET3. Interestingly, we observed re-activation of transcription of ICAM-1. Thus, our work suggests that we provided a mechanism to induce targeted DNA demethylation, which facilitates re-activation of expression of the target genes. Furthermore, this Epigenetic Editing approach is a powerful tool to investigate functions of epigenetic writers and erasers and to elucidate consequences of epigenetic marks.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Dioxigenases/metabolismo , Epigênese Genética , Molécula 1 de Adesão Intercelular/genética , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/metabolismo , Animais , Antígenos de Neoplasias/genética , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Metilação de DNA , Molécula de Adesão da Célula Epitelial , Células HEK293 , Humanos , Molécula 1 de Adesão Intercelular/biossíntese , Camundongos , Ativação Transcricional , Dedos de Zinco
12.
Int J Cancer ; 134(2): 280-90, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23832872

RESUMO

Ovarian cancer is a difficult-to-treat cancer with a 5-year survival rate of only ∼45%, due to late diagnosis and therapy resistance. In need of new therapeutic approaches, induction of intercellular adhesion molecule (ICAM)-1 expression might be of interest, since the expression of ICAM-1 is lower in ovarian cancer cells compared with healthy ovarian cells and correlated with decreased tumorigenicity. Whereas ICAM-1 expression on tumor cells is of importance for attracting immune cells, ICAM-1 might also induce tumorigenicity and chemoresistance. In ovarian cancer, such a role of ICAM-1 is unclear. Here, we investigated whether ICAM-1 has a cell-biological role by bidirectional modulation of ICAM-1 expression using ICAM-targeting artificial transcription factors. For a panel of ovarian cancer cells, tumor growth and cisplatin sensitivity were evaluated. Induction of ICAM-1 expression (ranging from 3- to 228-fold on mRNA level and 1.7- to 108-fold on protein level) resulted in indications of decreased ovarian cancer cell growth and reduced cisplatin sensitivity. Repression ranged from 48 to 94% on mRNA level and 47 to 91% on protein level. This study shows that, next to its established immunogenic role, ICAM-1 affects cell biological behavior of ovarian cancer cells and, importantly, that reexpression by artificial transcription factors represents a powerful approach for functional validation of genes epigenetically silenced in cancer, such as ICAM-1.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Molécula 1 de Adesão Intercelular/metabolismo , Neoplasias Ovarianas/prevenção & controle , Fatores de Transcrição/metabolismo , Western Blotting , Proliferação de Células/efeitos dos fármacos , Imunoprecipitação da Cromatina , Feminino , Citometria de Fluxo , Humanos , Molécula 1 de Adesão Intercelular/genética , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
13.
Mol Cancer Res ; 11(9): 1029-39, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23814024

RESUMO

UNLABELLED: The human epidermal growth factor receptor-2 (HER2/neu/ERBB2) is overexpressed in several cancer types. Although therapies targeting the HER2/neu protein result in inhibition of cell proliferation, the anticancer effect might be further optimized by limiting HER2/neu expression at the DNA level. Towards this aim, epigenetic editing was performed to suppress HER2/neu expression by inducing epigenetic silencing marks on the HER2/neu promoter.HER2/neu expression and HER2/neu promoter epigenetic modification status were determined in a panel of ovarian and breast cancer cell lines. HER2/neu-overexpressing cancer cells were transduced to express a zinc finger protein (ZFP), targeting the HER2/neugene, fused to histone methyltransferases (G9a, SUV39-H1)/super KRAB domain (SKD). Epigenetic assessment of the HER2/neu promoter showed that HER2/neu-ZFP fused to G9a efficiently induced the intended silencing histone methylation mark (H3K9me2). Importantly, H3K9me2 induction was associated with a dramatic downregulation of HER2/neu expression in HER2/neu- overexpressing cells. Downregulation by SKD, traditionally considered transient in nature, was associated with removal of the histone acetylation mark (H3ac). The downregulation of HER2/neu by induced H3K9 methylation and/or reduced H3 acetylation was sufficient to effectively inhibit cellular metabolic activity and clonogenicity. Furthermore, genome-wide analysis indicated preferential binding of the ZFP to its target sequence. These results not only show that H3K9 methylation can be induced but also that this epigenetic mark was instructive in promoting downregulation of HER2/neu expression. IMPLICATIONS: Epigenetic editing provides a novel (synergistic) approach to modulate expression of oncogenes.


Assuntos
Neoplasias da Mama/genética , Epigênese Genética , Inativação Gênica , Neoplasias Ovarianas/genética , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Células MCF-7 , Metilação , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Mol Oncol ; 7(3): 669-79, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23522960

RESUMO

C13ORF18 is frequently hypermethylated in cervical cancer but not in normal cervix and might serve as a biomarker for the early detection of cervical cancer in scrapings. As hypermethylation is often observed for silenced tumor suppressor genes (TSGs), hypermethylated biomarker genes might exhibit tumor suppressive activities upon re-expression. Epigenetic drugs are successfully exploited to reverse TSG silencing, but act genome-wide. Artificial Transcription Factors (ATFs) provide a gene-specific approach for re-expression of silenced genes. Here, we investigated the potential tumor suppressive role of C13ORF18 in cervical cancer by ATF-induced re-expression. Five zinc finger proteins were engineered to bind the C13ORF18 promoter and fused to a strong transcriptional activator. C13ORF18 expression could be induced in cervical cell lines: ranging from >40-fold in positive (C13ORF18-unmethylated) cells to >110-fold in negative (C13ORF18-methylated) cells. Re-activation of C13ORF18 resulted in significant cell growth inhibition and/or induction of apoptosis. Co-treatment of cell lines with ATFs and epigenetic drugs further enhanced the ATF-induced effects. Interestingly, re-activation of C13ORF18 led to partial demethylation of the C13ORF18 promoter and decreased repressive histone methylation. These data demonstrate the potency of ATFs to re-express and potentially demethylate hypermethylated silenced genes. Concluding, we show that C13ORF18 has a TSG function in cervical cancer and may serve as a therapeutic anti-cancer target. As the amount of epimutations in cancer exceeds the number of gene mutations, ATFs provide promising tools to validate hypermethylated marker genes as therapeutic targets.


Assuntos
Colo do Útero/patologia , Genes Supressores de Tumor , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Neoplasias do Colo do Útero/genética , Linhagem Celular Tumoral , Colo do Útero/metabolismo , Metilação de DNA , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Neoplasias do Colo do Útero/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...