Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(8): e2306996, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38031346

RESUMO

Numerous bio-organisms employ template-assisted crystallization of molecular solids to yield crystal morphologies with unique optical properties that are difficult to reproduce synthetically. Here, a facile procedure is presented to deposit bio-inspired birefringent crystals of xanthine derivatives on a template of single-crystal quartz. Crystalline sheets that are several millimeters in length, several hundred micrometers in width, and 300-600 nm thick, are obtained. The crystal sheets are characterized with a well-defined orientation both in and out of the substrate plane, giving rise to high optical anisotropy in the plane parallel to the quartz surface, with a refractive index difference Δn ≈ 0.25 and a refractive index along the slow axis of n ≈ 1.7. It is further shown that patterning of the crystalline stripes with a tailored periodic grating leads to a thin organic polarization-dependent diffractive meta-surface, opening the door to the fabrication of various optical devices from a platform of small-molecule based organic dielectric crystals.

2.
Science ; 381(6664): 1357-1363, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37733864

RESUMO

Photoisomerization of azobenzenes from their stable E isomer to the metastable Z state is the basis of numerous applications of these molecules. However, this reaction typically requires ultraviolet light, which limits applicability. In this study, we introduce disequilibration by sensitization under confinement (DESC), a supramolecular approach to induce the E-to-Z isomerization by using light of a desired color, including red. DESC relies on a combination of a macrocyclic host and a photosensitizer, which act together to selectively bind and sensitize E-azobenzenes for isomerization. The Z isomer lacks strong affinity for and is expelled from the host, which can then convert additional E-azobenzenes to the Z state. In this way, the host-photosensitizer complex converts photon energy into chemical energy in the form of out-of-equilibrium photostationary states, including ones that cannot be accessed through direct photoexcitation.

3.
Nat Mater ; 22(8): 939-940, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37443382
4.
J Chem Phys ; 158(17)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37144713

RESUMO

The power conversion efficiencies of lead halide perovskite thin film solar cells have surged in the short time since their inception. Compounds, such as ionic liquids (ILs), have been explored as chemical additives and interface modifiers in perovskite solar cells, contributing to the rapid increase in cell efficiencies. However, due to the small surface area-to-volume ratio of the large grained polycrystalline halide perovskite films, an atomistic understanding of the interaction between ILs and perovskite surfaces is limited. Here, we use quantum dots (QDs) to study the coordinative surface interaction between phosphonium-based ILs and CsPbBr3. When native oleylammonium oleate ligands are exchanged off the QD surface with the phosphonium cation as well as the IL anion, a threefold increase in photoluminescent quantum yield of as-synthesized QDs is observed. The CsPbBr3 QD structure, shape, and size remain unchanged after ligand exchange, indicating only a surface ligand interaction at approximately equimolar additions of the IL. Increased concentrations of the IL lead to a disadvantageous phase change and a concomitant decrease in photoluminescent quantum yields. Valuable information regarding the coordinative interaction between certain ILs and lead halide perovskites has been elucidated and can be used for informed pairing of beneficial combinations of IL cations and anions.

5.
Chem ; 8(9): 2362-2379, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36133801

RESUMO

Confinement within molecular cages can dramatically modify the physicochemical properties of the encapsulated guest molecules, but such host-guest complexes have mainly been studied in a static context. Combining confinement effects with fast guest exchange kinetics could pave the way toward stimuli-responsive supramolecular systems-and ultimately materials-whose desired properties could be tailored "on demand" rapidly and reversibly. Here, we demonstrate rapid guest exchange between inclusion complexes of an open-window coordination cage that can simultaneously accommodate two guest molecules. Working with two types of guests, anthracene derivatives and BODIPY dyes, we show that the former can substantially modify the optical properties of the latter upon noncovalent heterodimer formation. We also studied the light-induced covalent dimerization of encapsulated anthracenes and found large effects of confinement on reaction rates. By coupling the photodimerization with the rapid guest exchange, we developed a new way to modulate fluorescence using external irradiation.

6.
Angew Chem Int Ed Engl ; 61(34): e202205238, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35594390

RESUMO

We show that metal-organic frameworks, based on tetrahedral pyridyl ligands, can be used as a morphological and structural template to form a series of isostructural crystals having different metal ions and properties. An iterative crystal-to-crystal conversion has been demonstrated by consecutive cation exchanges. The primary manganese-based crystals are characterized by an uncommon space group (P622). The packing includes chiral channels that can mediate the cation exchange, as indicated by energy-dispersive X-ray spectroscopy on microtome-sectioned crystals. The observed cation exchange is in excellent agreement with the Irving-Williams series (MnZn) associated with the relative stability of the resulting coordination nodes. Furthermore, we demonstrate how the metal cation controls the optical and magnetic properties. The crystals maintain their morphology, allowing a quantitative comparison of their properties at both the ensemble and single-crystal level.

7.
ACS Nano ; 15(12): 19581-19587, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34846120

RESUMO

Understanding exciton-exciton interaction in multiply excited nanocrystals is crucial to their utilization as functional materials. Yet, for lead halide perovskite nanocrystals, which are promising candidates for nanocrystal-based technologies, numerous contradicting values have been reported for the strength and sign of their exciton-exciton interaction. In this work, we unambiguously determine the biexciton binding energy in single cesium lead halide perovskite nanocrystals at room temperature. This is enabled by the recently introduced single-photon avalanche diode array spectrometer, capable of temporally isolating biexciton-exciton emission cascades while retaining spectral resolution. We demonstrate that CsPbBr3 nanocrystals feature an attractive exciton-exciton interaction, with a mean biexciton binding energy of 10 meV. For CsPbI3 nanocrystals, we observe a mean biexciton binding energy that is close to zero, and individual nanocrystals show either weakly attractive or weakly repulsive exciton-exciton interaction. We further show that, within ensembles of both materials, single-nanocrystal biexciton binding energies are correlated with the degree of charge-carrier confinement.

8.
Acc Chem Res ; 54(6): 1409-1418, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33570394

RESUMO

ConspectusThe rediscovery of the halide perovskite class of compounds and, in particular, the organic and inorganic lead halide perovskite (LHP) materials and lead-free derivatives has reached remarkable landmarks in numerous applications. First among these is the field of photovoltaics, which is at the core of today's environmental sustainability efforts. Indeed, these efforts have born fruit, reaching to date a remarkable power conversion efficiency of 25.2% for a double-cation Cs, FA lead halide thin film device. Other applications include light and particle detectors as well as lighting. However, chemical and thermal degradation issues prevent perovskite-based devices and particularly photovoltaic modules from reaching the market. The soft ionic nature of LHPs makes these materials susceptible to delicate changes in the chemical environment. Therefore, control over their interface properties plays a critical role in maintaining their stability. Here we focus on LHP nanocrystals, where surface termination by ligands determines not only the stability of the material but also the crystallographic phase and crystal habit. A surface analysis of nanocrystal interfaces revealed the involvement of Brønsted type acid-base equilibrium in the modification of the ligand moieties present, which in turn can invoke dissolution and recrystallization into the more favorable phase in terms of minimization of the surface energy. A large library of surface ligands has already been developed showing both good chemical stability and good electronic surface passivation, resulting in near-unity emission quantum yields for some materials, particularly CsPbBr3. However, most of those ligands have a large organic tail hampering charge carrier transport and extraction in nanocrystal-based solid films.The unique perovskite structure that allows ligand substitution in the surface A (cation) sites and the soft ionic nature is expected to allow the accommodation of large dipoles across the perovskite crystal. This was shown to facilitate electron transfer across a molecular linked single-particle junction, creating a large built-in field across the junction nanodomains. This strategy could be useful for implementing LHP NCs in a p-n junction photovoltaic configuration as well as for a variety of electronic devices. A better understanding of the surface propeties of LHP nanocrystals will also enable better control of their growth on surfaces and in confined volumes, such as those afforded by metal-organic frameworks, zeolites, or chemically patterened surfaces such as anodic alumina, which have already been shown to significantly alter the properties of in-situ-grown LHP materials.

9.
ACS Nano ; 15(1): 526-538, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33356120

RESUMO

Metal-organic chemical vapor deposition (MOCVD) is one of the main methodologies used for thin-film fabrication in the semiconductor industry today and is considered one of the most promising routes to achieve large-scale and high-quality 2D transition metal dichalcogenides (TMDCs). However, if special measures are not taken, MOCVD suffers from some serious drawbacks, such as small domain size and carbon contamination, resulting in poor optical and crystal quality, which may inhibit its implementation for the large-scale fabrication of atomic-thin semiconductors. Here we present a growth-etch MOCVD (GE-MOCVD) methodology, in which a small amount of water vapor is introduced during the growth, while the precursors are delivered in pulses. The evolution of the growth as a function of the amount of water vapor, the number and type of cycles, and the gas composition is described. We show a significant domain size increase is achieved relative to our conventional process. The improved crystal quality of WS2 (and WSe2) domains wasis demonstrated by means of Raman spectroscopy, photoluminescence (PL) spectroscopy, and HRTEM studies. Moreover, time-resolved PL studies show very long exciton lifetimes, comparable to those observed in mechanically exfoliated flakes. Thus, the GE-MOCVD approach presented here may facilitate their integration into a wide range of applications.

10.
J Chem Phys ; 151(17): 174704, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703516

RESUMO

Formation of a p-n junction-like with a large built-in field is demonstrated at the nanoscale, using two types of semiconducting nanoparticles, CsPbBr3 nanocrystals and CdSe nanoplatelets, capped with molecular linkers. By exploiting chemical recognition of the capping molecules, the two types of nanoparticles are brought into mutual contact, thus initiating spontaneous charge transfer and the formation of a strong junction field. Depending on the choice of capping molecules, the magnitude of the latter field is shown to vary in a broad range, corresponding to an interface potential step as large as ∼1 eV. The band diagram of the system as well as the emergence of photoinduced charge transfer processes across the interface is studied here by means of optical and photoelectron based spectroscopies. Our results propose an interesting template for generating and harnessing internal built-in fields in heterogeneous nanocrystal solids.

11.
Nanoscale Adv ; 1(10): 4109-4118, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36132121

RESUMO

Colloidal PbS quantum dots (QDs) have been successfully employed as additives in halide perovskite solar cells (PSCs) acting as nucleation centers in the perovskite crystallization process. For this strategy, the surface functionalization of the QDs, controlled via the use of different capping ligands, is likely of key importance. In this work, we examine the influence of the PbS QD capping on the photovoltaic performance of methylammonium lead iodide PSCs. We test PSCs fabricated with PbS QD additives with different capping ligands including methylammonium lead iodide (MAPI), cesium lead iodide (CsPI) and 4-aminobenzoic acid (ABA). Both the presence of PbS QDs and the specific capping used have a significant effect on the properties of the deposited perovskite layer, which affects, in turn, the photovoltaic performance. For all capping ligands used, the inclusion of PbS QDs leads to the formation of perovskite films with larger grain size, improving, in addition, the crystalline preferential orientation and the crystallinity. Yet, differences between the capping agents were observed. The use of QDs with ABA capping had a higher impact on the morphological properties while the employment of the CsPI ligand was more effective in improving the optical properties of the perovskite films. Taking advantage of the improved properties, PSCs based on the perovskite films with embedded PbS QDs exhibit an enhanced photovoltaic performance, showing the highest increase with ABA capping. Moreover, bulk recombination via trap states is reduced when the ABA ligand is used for capping of the PbS QD additives in the perovskite film. We demonstrate how surface chemistry engineering of PbS QD additives in solution-processed perovskite films opens a new approach towards the design of high quality materials, paving the way to improved optoelectronic properties and more efficient photovoltaic devices.

12.
Phys Chem Chem Phys ; 18(22): 15295-303, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27211113

RESUMO

Cadmium chalcogenide nanoplatelet (NPL) synthesis has recently witnessed a significant advance in the production of more elaborate structures such as core/shell and core/crown NPLs. However, controlled doping in these structures has proved difficult because of the restrictive synthetic conditions required for 2D anisotropic growth. Here, we explore the incorporation of tellurium (Te) within CdSe NPLs with Te concentrations ranging from doping to alloying. For Te concentrations higher than ∼30%, the CdSexTe(1-x) NPLs show emission properties characteristic of an alloyed material with a bowing of the band gap for increased concentrations of Te. This behavior is in line with observations in bulk samples and can be put in the context of the transition from a pure material to an alloy. In the dilute doping regime, CdSe:Te NPLs, in comparison to CdSe NPLs, show a distinct photoluminescence (PL) red shift and prolonged emission lifetimes (LTs) associated with Te hole traps which are much deeper than in bulk samples. Furthermore, single particle spectroscopy reveals dramatic modifications in PL properties. In particular, doped NPLs exhibit photon antibunching and emission dynamics significantly modified compared to undoped or alloyed NPLs.

13.
Acc Chem Res ; 49(5): 902-10, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27108870

RESUMO

Pairs of coupled quantum dots with controlled coupling between the two potential wells serve as an extremely rich system, exhibiting a plethora of optical phenomena that do not exist in each of the isolated constituent dots. Over the past decade, coupled quantum systems have been under extensive study in the context of epitaxially grown quantum dots (QDs), but only a handful of examples have been reported with colloidal QDs. This is mostly due to the difficulties in controllably growing nanoparticles that encapsulate within them two dots separated by an energetic barrier via colloidal synthesis methods. Recent advances in colloidal synthesis methods have enabled the first clear demonstrations of colloidal double quantum dots and allowed for the first exploratory studies into their optical properties. Nevertheless, colloidal double QDs can offer an extended level of structural manipulation that allows not only for a broader range of materials to be used as compared with epitaxially grown counterparts but also for more complex control over the coupling mechanisms and coupling strength between two spatially separated quantum dots. The photophysics of these nanostructures is governed by the balance between two coupling mechanisms. The first is via dipole-dipole interactions between the two constituent components, leading to energy transfer between them. The second is associated with overlap of excited carrier wave functions, leading to charge transfer and multicarrier interactions between the two components. The magnitude of the coupling between the two subcomponents is determined by the detailed potential landscape within the nanocrystals (NCs). One of the hallmarks of double QDs is the observation of dual-color emission from a single nanoparticle, which allows for detailed spectroscopy of their properties down to the single particle level. Furthermore, rational design of the two coupled subsystems enables one to tune the emission statistics from single photon emission to classical emission. Dual emission also provides these NCs with more advanced functionalities than the isolated components. The ability to better tailor the emission spectrum can be advantageous for color designed LEDs in lighting and display applications. The different response of the two emission colors to external stimuli enables ratiometric sensing. Control over hot carrier dynamics within such structures allows for photoluminescence upconversion. This Account first provides a description of the main hurdles toward the synthesis of colloidal double QDs and an overview of the growing library of synthetic pathways toward constructing them. The main discoveries regarding their photophysical properties are then described in detail, followed by an overview of potential applications taking advantage of the double-dot structure. Finally, a perspective and outlook for their future development is provided.

14.
J Phys Chem Lett ; 5(15): 2717-22, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26277969

RESUMO

Significant overpotentials between the sensitizer and both the electron and hole conductors hamper the performance of sensitized solar cells, leading to a reduced photovoltage. We show that by using properly designed type-II quantum dots (QDs) between the sensitizer and the hole conductor in thin absorber cells, it is possible to increase the open circuit voltage (Voc) by more than 100 mV. This increase is due to the formation of a photoinduced dipole (PID) layer. Photogenerated holes in the type-II QDs are retained in the core for a relatively long time, allowing for the accumulation of a positively charged layer. Negative charges are, in turn, injected and accumulated in the TiO2 anode, creating a dipole moment, which negatively shifts the TiO2 conduction band relative to the electrolyte. We study this phenomenon using a unique TiO2/CdSe/(ZnSe:Te/CdS)/polysulfide system, where the formation of a PID depends on the color of the illumination. The PID concept thus introduces a new design strategy, where the operating parameters of the solar cell can be manipulated separately.

15.
Opt Lett ; 31(3): 356-8, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16480207

RESUMO

A blue solid-state laser material based on 4,4' dibenzyl carbamido stilbene-2,2' disulfonic acid incorporated into solgel zirconia and inorganic-organic hybrid matrices is presented. The absorption maxima of the dye in various matrices are around 339-361 nm, and the broad fluorescence peaks are at 411-413 nm. Optical gain measurements using the variable stripe method show amplified spontaneous emission peaking at 437 nm.

16.
Nano Lett ; 5(8): 1581-6, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16089492

RESUMO

The exceptional fluorescence properties of single CdSe quantum rods (QRs) arising from internal and external electric fields are studied. Reversible external field induced switching of the emission in single QRs is reported for the first time. This effect was correlated with local field induced emission intensity reduction and newly observed darkening mechanism. Bimodal spectral jumps under a zero field were also observed and assigned to charged exciton emission, a phenomenon that was likewise directly controlled through an external field. These phenomena point to the use of single QRs as spectrally tunable charge sensitive fluorophores with polarized emission in fluorescence tagging and optical switching applications.


Assuntos
Compostos de Cádmio/química , Compostos de Cádmio/efeitos da radiação , Campos Eletromagnéticos , Pontos Quânticos , Semicondutores , Sulfetos/química , Sulfetos/efeitos da radiação , Compostos de Cádmio/análise , Relação Dose-Resposta à Radiação , Fluorescência , Tamanho da Partícula , Doses de Radiação , Sulfetos/análise
17.
Science ; 295(5559): 1506-8, 2002 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-11859189

RESUMO

Conjugated polymers and indium arsenide-based nanocrystals were used to create near-infrared plastic light-emitting diodes. Emission was tunable from 1 to 1.3 micrometers--a range that effectively covers the short-wavelength telecommunications band--by means of the quantum confinement effects in the nanocrystals. The external efficiency value (photons out divided by electrons in) is approximately 0.5% (that is, >1% internal) and is mainly limited by device architecture. The near-infrared emission did not overlap the charge-induced absorption bands of the polymer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...