Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 10(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36002187

RESUMO

BACKGROUND: The existence of immunologically 'cold tumors' frequently found across a wide spectrum of tumor types represents a significant challenge for cancer immunotherapy. Cold tumors have poor baseline pan-leukocyte infiltration, including a low prevalence of cytotoxic lymphocytes, and not surprisingly respond unfavorably to immune checkpoint (IC) inhibitors. We hypothesized that cold tumors harbor a mechanism of immune escape upstream and independent of ICs that may be driven by tumor biology rather than differences in mutational neoantigen burden. METHODS: Using a bioinformatic approach to analyze TCGA (The Cancer Genome Atlas) RNA sequencing data we identified genes upregulated in cold versus hot tumors across four different smoking-related cancers, including squamous carcinomas from the oral cavity (OCSCC) and lung (LUSC), and adenocarcinomas of the bladder (BLCA) and lung (LUAD). Biological significance of the gene most robustly associated with a cold tumor phenotype across all four tumor types, glutathione peroxidase 2 (GPX2), was further evaluated using a combination of in silico analyses and functional genomic experiments performed both in vitro and in in vivo with preclinical models of oral cancer. RESULTS: Elevated RNA expression of five metabolic enzymes including GPX2, aldo-keto reductase family 1 members AKR1C1, AKR1C3, and cytochrome monoxygenases (CP4F11 and CYP4F3) co-occurred in cold tumors across all four smoking-related cancers. These genes have all been linked to negative regulation of arachidonic acid metabolism-a well-established inflammatory pathway-and are also known downstream targets of the redox sensitive Nrf2 transcription factor pathway. In OCSCC, LUSC, and LUAD, GPX2 expression was highly correlated with Nrf2 activation signatures, also elevated in cold tumors. In BLCA, however, GPX2 correlated more strongly than Nrf2 signatures with decreased infiltration of multiple leukocyte subtypes. GPX2 inversely correlated with expression of multiple pro- inflammatory cytokines/chemokines and NF-kB activation in cell lines and knockdown of GPX2 led to increased secretion of prostaglandin E2 (PGE2) and interleukin-6. Conversely, GPX2 overexpression led to reduced PGE2 production in a murine OCSCC model (MOC1). GPX2 overexpressing MOC1 tumors had a more suppressive tumor immune microenvironment and responded less favorably to anti-cytotoxic T-lymphocytes-associated protein 4 IC therapy in mice. CONCLUSION: GPX2 overexpression represents a novel potentially targetable effector of immune escape in cold tumors.


Assuntos
Glutationa Peroxidase/metabolismo , Inibidores de Checkpoint Imunológico , Fator 2 Relacionado a NF-E2 , Animais , Dinoprostona , Glutationa Peroxidase/genética , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Microambiente Tumoral
2.
Cells ; 9(12)2020 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322834

RESUMO

Biomarker-driven targeted therapies are lacking for head and neck squamous cell carcinoma (HNSCC), which is common and lethal. Efforts to develop such therapies are hindered by a genomic landscape dominated by the loss of tumor suppressor function, including NOTCH1 that is frequently mutated in HNSCC. Clearer understanding of NOTCH1 signaling in HNSCCs is crucial to clinically targeting this pathway. Structural characterization of NOTCH1 mutations in HNSCC demonstrates that most are predicted to cause loss of function, in agreement with NOTCH1's role as a tumor suppressor in this cancer. Experimental manipulation of NOTCH1 signaling in HNSCC cell lines harboring either mutant or wild-type NOTCH1 further supports a tumor suppressor function. Additionally, the loss of NOTCH1 signaling can drive HNSCC tumorigenesis and clinical aggressiveness. Our recent data suggest that NOTCH1 controls genes involved in early differentiation that could have different phenotypic consequences depending on the cancer's genetic background, including acquisition of pseudo-stem cell-like properties. The presence of NOTCH1 mutations may predict response to treatment with an immune checkpoint or phosphatidylinositol 3-kinase inhibitors. The latter is being tested in a clinical trial, and if validated, it may lead to the development of the first biomarker-driven targeted therapy for HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Transição Epitelial-Mesenquimal , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Mutação/genética , Receptor Notch1/química , Receptor Notch1/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
3.
Sci Rep ; 10(1): 6380, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286489

RESUMO

Mitochondrial activity is a critical component of tumor metabolism, with profound implications for tumorigenesis and treatment response. We analyzed clinical, genomic and expression data from patients with oral cavity squamous cell carcinoma (OCSCC) in order to map metabologenomic events which may correlate with clinical outcomes and identified nuclear genes involved in oxidative phosphorylation and glycolysis (OXPHOG) as a critical predictor of patient survival. This correlation was validated in a secondary unrelated set of lung squamous cell carcinoma (LUSC) and was shown to be driven largely by over-expression of nuclear encoded components of the mitochondrial electron transport chain (ETC) coordinated with an increase in tumor mitochondrial DNA copy number and a strong threshold effect on patient survival. OCSCC and LUSC patients with a favorable OXPHOG signature demonstrated a dramatic (>2fold) improvement in survival compared to their counterparts. Differential OXPHOG expression correlated with varying tumor immune infiltrates suggesting that the interaction between tumor metabolic activity and tumor associated immunocytes may be a critical driver of improved clinical outcomes in this patient subset. These data provide strong support for studies aimed at mechanistically characterizing the interaction between tumor mitochondrial activity and the tumor immune microenvironment.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/metabolismo , Neoplasias Bucais/metabolismo , Fosforilação Oxidativa , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinogênese , Variações do Número de Cópias de DNA , DNA Mitocondrial/genética , Bases de Dados Genéticas , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Humanos , Mitocôndrias/metabolismo , Análise de Sobrevida , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...