Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Prog Retin Eye Res ; : 101271, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38740254

RESUMO

Chronic elevation of blood glucose at first causes relatively minor changes to the neural and vascular components of the retina. As the duration of hyperglycemia persists, the nature and extent of damage increases and becomes readily detectable. While this second, overt manifestation of diabetic retinopathy (DR) has been studied extensively, what prevents maximal damage from the very start of hyperglycemia remains largely unexplored. Recent studies indicate that diabetes (DM) engages mitochondria-based defense during the retinopathy-resistant phase, and thereby enables the retina to remain healthy in the face of hyperglycemia. Such resilience is transient, and its deterioration results in progressive accumulation of retinal damage. The concepts that co-emerge with these discoveries set the stage for novel intellectual and therapeutic opportunities within the DR field. Identification of biomarkers and mediators of protection from DM-mediated damage will enable development of resilience-based therapies that will indefinitely delay the onset of DR.

2.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338889

RESUMO

Diabetic retinopathy (DR) is the most common complication that develops in patients with diabetes mellitus (DM) and is the leading cause of blindness worldwide. Fortunately, sight-threatening forms of DR develop only after several decades of DM. This well-documented resilience to DR suggests that the retina is capable of protecting itself from DM-related damage and also that accumulation of such damage occurs only after deterioration of this resilience. Despite the enormous translational significance of this phenomenon, very little is known regarding the nature of resilience to DR. Rodent models of DR have been used extensively to study the nature of the DM-induced damage, i.e., cardinal features of DR. Many of these same animal models can be used to investigate resilience because DR is delayed from the onset of DM by several weeks or months. The purpose of this review is to provide a comprehensive overview of the literature describing the use of rodent models of DR in type-1 and type-2 diabetic animals, which most clearly document the delay between the onset of DM and the appearance of DR. These readily available experimental settings can be used to advance our current understanding of resilience to DR and thereby identify biomarkers and targets for novel, prevention-based approaches to manage patients at risk for developing DR.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Animais , Humanos , Cegueira , Modelos Animais , Diabetes Mellitus Tipo 2/complicações , Fatores de Risco , Prevalência
3.
J Vis Exp ; (203)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38284520

RESUMO

Diabetic retinopathy (DR) is a complex and progressive ocular disease characterized by two distinct phases in its pathogenesis. The first phase involves the loss of protection from diabetes-induced damage to the retina, while the second phase centers on the accumulation of this damage. Traditional assays primarily focus on evaluating capillary degeneration, which is indicative of the severity of damage, essentially addressing the second phase of DR. However, they only indirectly provide insights into whether the protective mechanisms of the retinal vasculature have been compromised. To address this limitation, a novel approach was developed to directly assess the retina's protective mechanisms - specifically, its resilience against diabetes-induced insults like oxidative stress and cytokines. This protection assay, although initially designed for diabetic retinopathy, holds the potential for broader applications in both physiological and pathological contexts. In summary, understanding the pathogenesis of diabetic retinopathy involves recognizing the dual phases of protection loss and damage accumulation, with this innovative protection assay offering a valuable tool for research and potentially extending to other medical conditions.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Camundongos , Animais , Retina/patologia , Vasos Retinianos , Estresse Oxidativo , Citocinas , Diabetes Mellitus/patologia
4.
Cell Death Dis ; 14(12): 834, 2023 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-38102109

RESUMO

Photoreceptor cell death and immune cell infiltration are two major events that contribute to retinal degeneration. However, the relationship between these two events has not been well delineated, primarily because of an inadequate understanding of the immunological processes involved in photoreceptor degeneration, especially that of peripheral leukocytes that infiltrate the subretinal space and retinal tissues. In this work, we characterized the role of leukocyte infiltration within the detached retina. We observed that CD45+ CD11b+ Ly6G+ neutrophils and CD45+ CD11b+ Ly6G- Ly6C+ monocytes are the predominant peripheral immune cell populations that infiltrate the retinal and subretinal space after detachment. Selective depletion of monocytes or neutrophils using cell-specific targeting is neuroprotective for photoreceptors. These results indicate that peripheral innate immune cells contribute to photoreceptor degeneration, and targeting these immune cell populations could be therapeutic during retinal detachment.


Assuntos
Degeneração Retiniana , Descolamento Retiniano , Humanos , Animais , Descolamento Retiniano/metabolismo , Monócitos/metabolismo , Neutrófilos/metabolismo , Células Fotorreceptoras/metabolismo , Retina/metabolismo , Degeneração Retiniana/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Modelos Animais de Doenças
5.
Biomedicines ; 11(9)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37760872

RESUMO

The therapeutic benefit provided by anti-vascular endothelial growth factor (VEGF) for patients with vision-threatening conditions such as diabetic retinopathy (DR) demonstrates the important role of VEGF in this affliction. Cytokines, which can be elevated in the vitreous of patients with DR, promote leakage of retinal blood vessels, and may also contribute to pathology, especially in those patients for whom anti-VEGF does not provide adequate benefit. In this in vitro study using primary human retinal endothelial cells, we compared anti-VEGF with the (transforming growth factor beta) TGFß receptor inhibitor RepSox (RS) for their ability to enforce barrier function in the face of VEGF, cytokines, and the combination of both. RS was superior to anti-VEGF because it prevented permeability in response to VEGF, cytokines, and their combination, whereas anti-VEGF was effective against VEGF alone. The inhibitory effect of RS was associated with suppression of both agonist-induced pore formation and disorganization of adherens junctions. RS-mediated inhibition of the TGFß pathway and increased expression of claudin-5 did not adequately explain how RS stabilized the endothelial cell barrier. Finally, RS not only prevented barrier relaxation, but also completely or partially reclosed a barrier relaxed with tumor necrosis factor α (TNF α) or VEGF, respectively. These studies demonstrate that RS stabilized the endothelial barrier in the face of both cytokines and VEGF, and thereby identify RS as a therapeutic that has the potential to overcome permeability driven by multiple agonists that play a role in the pathology of DR.

6.
BMC Ophthalmol ; 23(1): 344, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537538

RESUMO

BACKGROUND: Epiretinal membranes in patients with proliferative vitreoretinopathy (PVR) consist of extracellular matrix and a number of cell types including retinal pigment epithelial (RPE) cells and fibroblasts, whose contraction causes retinal detachment. In RPE cells depletion of platelet-derived growth factor (PDGF) receptor (PDGFR)ß suppresses vitreous-induced Akt activation, whereas in fibroblasts Akt activation through indirect activation of PDGFRα by growth factors outside the PDGF family (non-PDGFs) plays an essential role in experimental PVR. Whether non-PDGFs in the vitreous, however, were also able to activate PDGFRß in RPE cells remained elusive. METHODS: The CRISPR/Cas9 technology was utilized to edit a genomic PDGFRB locus in RPE cells derived from an epiretinal membrane (RPEM) from a patient with PVR, and a retroviral vector was used to express a truncated PDGFRß short of a PDGF-binding domain in the RPEM cells lacking PDGFRß. Western blot was employed to analyze expression of PDGFRß and α-smooth muscle actin, and signaling events (p-PDGFRß and p-Akt). Cellular assays (proliferation, migration and contraction) were also applied in this study. RESULTS: Expression of a truncated PDGFRß lacking a PDGF-binding domain in the RPEM cells whose PDGFRB gene has been silent using the CRISPR/Cas9 technology restores vitreous-induced Akt activation as well as cell proliferation, epithelial-mesenchymal transition, migration and contraction. In addition, we show that scavenging reactive oxygen species (ROS) with N-acetyl-cysteine and inhibiting Src family kinases (SFKs) with their specific inhibitor SU6656 blunt the vitreous-induced activation of the truncated PDGFRß and Akt as well as the cellular events related to the PVR pathogenesis. These discoveries suggest that in RPE cells PDGFRß can be activated indirectly by non-PDGFs in the vitreous via an intracellular pathway of ROS/SFKs to facilitate the development of PVR, thereby providing novel opportunities for PVR therapeutics. CONCLUSION: The data shown here will improve our understanding of the mechanism by which PDGFRß can be activated by non-PDGFs in the vitreous via an intracellular route of ROS/SFKs and provide a conceptual foundation for preventing PVR by inhibiting PDGFRß transactivation (ligand-independent activation).


Assuntos
Receptor beta de Fator de Crescimento Derivado de Plaquetas , Vitreorretinopatia Proliferativa , Humanos , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Epitélio Pigmentado da Retina/patologia , Proteínas Proto-Oncogênicas c-akt , Ligantes , Espécies Reativas de Oxigênio/metabolismo , Vitreorretinopatia Proliferativa/genética , Vitreorretinopatia Proliferativa/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Células Epiteliais/metabolismo , Pigmentos da Retina/metabolismo , Movimento Celular
7.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446043

RESUMO

The purpose of this study was to investigate the reason that diabetic retinopathy (DR) is delayed from the onset of diabetes (DM) in diabetic mice. To this end, we tested the hypothesis that the deleterious effects of DM are initially tolerated because endogenous antioxidative defense is elevated and thereby confers resistance to oxidative stress-induced death. We found that this was indeed the case in both type 1 DM (T1D) and type 2 DM (T2D) mouse models. The retinal expression of antioxidant defense genes was increased soon after the onset of DM. In addition, ischemia/oxidative stress caused less death in the retinal vasculature of DM versus non-DM mice. Further investigation with T1D mice revealed that protection was transient; it waned as the duration of DM was prolonged. Finally, a loss of protection was associated with the manifestation of both neural and vascular abnormalities that are diagnostic of DR in mice. These observations demonstrate that DM can transiently activate protection from oxidative stress, which is a plausible explanation for the delay in the development of DR from the onset of DM.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Retinopatia Diabética , Camundongos , Animais , Retinopatia Diabética/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Vasos Retinianos/metabolismo , Retina/metabolismo , Antioxidantes/metabolismo
8.
Int J Mol Sci ; 24(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37240047

RESUMO

The clinical success of neutralizing vascular endothelial growth factor (VEGF) has unequivocally identified VEGF as a driver of retinal edema that underlies a variety of blinding conditions. VEGF is not the only input that is received and integrated by the endothelium. For instance, the permeability of blood vessels is also regulated by the large and ubiquitously expressed transforming growth factor beta (TGF-ß) family. In this project, we tested the hypothesis that members of the TGF-ß family influence the VEGF-mediated control of the endothelial cell barrier. To this end, we compared the effect of bone morphogenetic protein-9 (BMP-9), TGF-ß1, and activin A on the VEGF-driven permeability of primary human retinal endothelial cells. While BMP-9 and TGF-ß1 had no effect on VEGF-induced permeability, activin A limited the extent to which VEGF relaxed the barrier. This activin A effect was associated with the reduced activation of VEGFR2 and its downstream effectors and an increased expression of vascular endothelial tyrosine phosphatase (VE-PTP). Attenuating the expression or activity of VE-PTP overcame the effect of activin A. Taken together, these observations indicate that the TGF-ß superfamily governed VEGF-mediated responsiveness in a ligand-specific manner. Furthermore, activin A suppressed the responsiveness of cells to VEGF, and the underlying mechanism involved the VE-PTP-mediated dephosphorylation of VEGFR2.


Assuntos
Células Endoteliais , Fator A de Crescimento do Endotélio Vascular , Humanos , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator 2 de Diferenciação de Crescimento/farmacologia , Fator 2 de Diferenciação de Crescimento/metabolismo , Endotélio Vascular/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas Tirosina Fosfatases/metabolismo
9.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37047375

RESUMO

The purpose of this study was to identify genes that mediate VEGF-induced permeability. We performed RNA-Seq analysis on primary human retinal endothelial cells (HRECs) cultured in normal (5 mM) and high glucose (30 mM) conditions that were treated with vehicle, VEGF, or VEGF then anti-VEGF. We filtered our RNA-Seq dataset to identify genes with the following four characteristics: (1) regulated by VEGF, (2) VEGF regulation reversed by anti-VEGF, (3) regulated by VEGF in both normal and high glucose conditions, and (4) known contribution to vascular homeostasis. Of the resultant 18 genes, members of the Notch signaling pathway and ANGPT2 (Ang2) were selected for further study. Permeability assays revealed that while the Notch pathway was dispensable for relaxing the barrier, it contributed to maintaining an open barrier. In contrast, Ang2 limited the extent of barrier relaxation in response to VEGF. These findings indicate that VEGF engages distinct sets of genes to induce and sustain barrier relaxation. Furthermore, VEGF induces expression of genes that limit the extent of barrier relaxation. Together, these observations begin to elucidate the elegance of VEGF-mediated transcriptional regulation of permeability.


Assuntos
Células Endoteliais , Fator A de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Células Cultivadas , Retina/metabolismo , Glucose/farmacologia , Glucose/metabolismo
10.
Cells ; 12(2)2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36672142

RESUMO

Epithelial mesenchymal transition (EMT) plays a vital role in a variety of human diseases including proliferative vitreoretinopathy (PVR), in which retinal pigment epithelial (RPE) cells play a key part. Transcriptomic analysis showed that the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway was up-regulated in human RPE cells upon treatment with transforming growth factor (TGF)-ß2, a multifunctional cytokine associated with clinical PVR. Stimulation of human RPE cells with TGF-ß2 induced expression of p110δ (the catalytic subunit of PI3Kδ) and activation of NFκB/p65. CRISPR-Cas9-mediated depletion of p110δ or NFκB/p65 suppressed TGF-ß2-induced fibronectin expression and activation of Akt as well as migration of these cells. Intriguingly, abrogating expression of NFκB/p65 also blocked TGF-ß2-induced expression of p110δ, and luciferase reporter assay indicated that TGF-ß2 induced NFκB/p65 binding to the promoter of the PIK3CD that encodes p110δ. These data reveal that NFκB/p65-mediated expression of PI3Kδ is essential in human RPE cells for TGF-ß2-induced EMT, uncovering hindrance of TGF-ß2-induced expression of p110δ as a novel approach to inhibit PVR.


Assuntos
Epitélio Pigmentado da Retina , Vitreorretinopatia Proliferativa , Humanos , Epitélio Pigmentado da Retina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Crescimento Transformador beta2/farmacologia , Fator de Crescimento Transformador beta2/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Vitreorretinopatia Proliferativa/metabolismo , NF-kappa B/metabolismo , Células Epiteliais/metabolismo , Pigmentos da Retina/metabolismo
11.
Am J Pathol ; 192(12): 1779-1794, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36063899

RESUMO

The observation that diabetic retinopathy (DR) typically takes decades to develop suggests the existence of an endogenous system that protects from diabetes-induced damage. To investigate the existance of such a system, primary human retinal endothelial cells were cultured in either normal glucose (5 mmol/L) or high glucose (30 mmol/L; HG). Prolonged exposure to HG was beneficial instead of detrimental. Although tumor necrosis factor-α-induced expression of vascular cell adhesion molecule 1 and intercellular adhesion molecule 1 was unaffected after 1 day of HG, it waned as the exposure to HG was extended. Similarly, oxidative stress-induced death decreased with prolonged exposure to HG. Furthermore, mitochondrial functionality, which was compromised by 1 day of HG, was improved by 10 days of HG, and this change required increased clearance of damaged mitochondria (mitophagy). Finally, antagonizing mitochondrial dynamics compromised the cells' ability to endure HG: susceptibility to cell death increased, and basal barrier function and responsiveness to vascular endothelial growth factor deteriorated. These observations indicate the existence of an endogenous system that protects human retinal endothelial cells from the deleterious effects of HG. Hyperglycemia-induced mitochondrial adaptation is a plausible contributor to the mechanism responsible for the delayed onset of DR; loss of hyperglycemia-induced mitochondrial adaptation may set the stage for the development of DR.


Assuntos
Retinopatia Diabética , Hiperglicemia , Humanos , Mitofagia , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Glucose/metabolismo , Hiperglicemia/patologia , Retinopatia Diabética/patologia
12.
Front Physiol ; 13: 846936, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392370

RESUMO

Aberrant lymphatic system function has been increasingly implicated in pathologies such as lymphedema, organ transplant rejection, cardiovascular disease, obesity, and neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. While some pathologies are exacerbated by lymphatic vessel regression and dysfunction, induced lymphatic regression could be therapeutically beneficial in others. Despite its importance, our understanding of lymphatic vessel regression is far behind that of blood vessel regression. Herein, we review the current understanding of blood vessel regression to identify several hallmarks of this phenomenon that can be extended to further our understanding of lymphatic vessel regression. We also summarize current research on lymphatic vessel regression and an array of research tools and models that can be utilized to advance this field. Additionally, we discuss the roles of lymphatic vessel regression and dysfunction in select pathologies, highlighting how an improved understanding of lymphatic vessel regression may yield therapeutic insights for these disease states.

13.
Invest Ophthalmol Vis Sci ; 62(12): 17, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34542556

RESUMO

Purpose: Investigate the contribution of the Wnt pathway to vascular endothelial growth factor (VEGF)/anti-VEGF-mediated control of endothelial cell permeability. Methods: High glucose-treated primary human retinal endothelial cells (HRECs) were exposed to either VEGF, or VEGF and then anti-VEGF. Changes in gene expression were assayed by RNAseq and qRT-PCR. Permeability was monitored by electrical cell-substrate impedance sensing (ECIS). Approaches to activate the Wnt pathway included treatment with LiCl and overexpression of constitutively activated ß-catenin. ß-catenin-dependent transcriptional activity was monitored in HRECs stably expressing a TCF/LEF-driven reporter. Results: VEGF/anti-VEGF altered expression of genes encoding many members of the Wnt pathway. A subset of these genes was regulated in a way that is likely to contribute to control of the endothelial cell barrier. Namely, the VEGF-induced alteration of expression of such genes was reversed by anti-VEGF, and such adjustments occurred at times corresponding to changes in barrier function. While pharmacological and molecular approaches to activate the Wnt pathway had no effect on basal permeability, they suppressed VEGF-induced relaxation. Furthermore, anti-VEGF-mediated restoration of barrier function was unaffected by activation of the Wnt pathway. Conclusions: VEGF/anti-VEGF engages multiple members of the Wnt pathway, and activating this pathway enforces the endothelial barrier by attenuating VEGF-induced relaxation. These data suggest that FDA-approved agents such as LiCl may be an adjuvant to anti-VEGF therapy for patients afflicted with blinding conditions including diabetic retinopathy.


Assuntos
Permeabilidade da Membrana Celular/fisiologia , Células Endoteliais/metabolismo , Vasos Retinianos/citologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo , Via de Sinalização Wnt/fisiologia , Adulto , Inibidores da Angiogênese/farmacologia , Células Cultivadas , Impedância Elétrica , Regulação da Expressão Gênica/fisiologia , Glucose/farmacologia , Humanos , Lentivirus/genética , Cloreto de Lítio/farmacologia , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Fatores de Crescimento do Endotélio Vascular , Proteínas Recombinantes de Fusão/farmacologia , Transfecção , beta Catenina/metabolismo
14.
Foot (Edinb) ; 47: 101769, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33962113

RESUMO

BACKGROUND: Patients struggle to fully recover after an Achilles tendon rupture. Although several studies has investigated surgical and non-surgical treatment, the best treatment is still uncertain. The aim of this study was to investigate long-term patient-reported outcomes and objective measures 4 years after acute Achilles tendon rupture and compare whether outcomes differed between patients treated on basis of the previous regimen preferring surgical treatment and the new regimen preferring functional rehabilitation. METHODS: Achilles tendon Total Rupture Score (ATRS), number of re-ruptures and the objective measures; Achilles tendon resting angle, calf circumference, heel-rise height, and muscle endurance were measured at a 4-year follow-up. Patients were recruited from Aalborg University Hospital. RESULTS: Seventy-six patients were included (29% female). The mean ATRS was 71.4 (95% CI: 65.8 to 77.1) at 4 years follow-up. No difference in ATRS was observed between Previous regimen and New regimen at any timepoint (time x group interaction, (p=0.851). The injured side was still significantly impaired compared with the non-injured side in terms of all objective measures. Impairments in objective measures were not dependent on the preferred treatment strategy. CONCLUSIONS: Patient reported impairments and objective functional deficits persist 4 years after an acute Achilles tendon rupture. No differences in patient reported outcome or objective measures at the 4 years follow-up was observed between the old treatment regimen preferring surgery compared with the new treatment regimen preferring functional rehabilitation.


Assuntos
Tendão do Calcâneo , Traumatismos dos Tendões , Tendão do Calcâneo/cirurgia , Feminino , Seguimentos , Humanos , Masculino , Ruptura , Traumatismos dos Tendões/cirurgia , Resultado do Tratamento
15.
Invest Ophthalmol Vis Sci ; 62(2): 5, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33533881

RESUMO

Purpose: Vascular endothelial growth factor (VEGF) and its receptor VEGFR2 are promising therapeutic targets for wet age-related macular degeneration (AMD). As a topically applicable option, we developed the peptide KAI to selectively interfere with VEGFR2 trafficking to the cell surface where it receives VEGF. This study sought to determine the efficacy of KAI in the mouse model of choroidal neovascularization (CNV). Methods: The specificity of KAI was tested by surface plasmon resonance. The drug delivery was analyzed by cryosection and the ELISA after treatment of KAI eyedrop to the mouse eyes. For the laser-induced CNV model, mice with laser-induced ruptures in Bruch's membrane received daily treatment of KAI eyedrop or control peptide. The other groups of mice received intravitreal injection of anti-VEGF or IgG control. After two weeks, CNV was quantified and compared. Results: First, we showed the specificity and high affinity of KAI to VEGFR2. Next, biodistribution revealed successful delivery of KAI eyedrop to the back of the mouse eyes. KAI significantly reduced the disease progression in laser-induced CNV. The comparison with current therapy suggests that KAI eyedrop is as effective as current therapy to prevent CNV in wet AMD. Moreover, the genetic deletion of a kinesin KIF13B, which mediates VEGFR2 trafficking to the cell surface, confirmed the pivotal role of KIF13B in disease progression of wet AMD and neovascularization from choroidal vessels. Conclusions: Taken together, pharmacologic inhibition and genetic deletion complementarily suggest the therapeutic possibility of targeting VEGFR2 trafficking to inhibit pathological angiogenesis in wet AMD.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Corioide/metabolismo , Cinesinas/metabolismo , Proteínas de Membrana/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Degeneração Macular Exsudativa/tratamento farmacológico , Animais , Corioide/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Distribuição Tecidual , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Degeneração Macular Exsudativa/metabolismo , Degeneração Macular Exsudativa/patologia
16.
Am J Pathol ; 190(9): 1971-1981, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32590003

RESUMO

Leakage of retinal blood vessels, which is an essential element of diabetic retinopathy, is driven by chronic elevation of vascular endothelial growth factor (VEGF). VEGF quickly relaxes the endothelial cell barrier by triggering signaling events that post-translationally modify pre-existing components of intercellular junctions. VEGF also changes expression of genes that are known to regulate barrier function. Our goal was to identify effectors by which VEGF and anti-VEGF control the endothelial cell barrier in cells that were chronically exposed to VEGF (hours instead of minutes). The duration of VEGF exposure influenced both barrier relaxation and anti-VEGF-mediated closure. Most VEGF-induced changes in gene expression were not reversed by anti-VEGF. Those that were constitute VEGF effectors that are targets of anti-VEGF. Pursuit of such candidates revealed that VEGF used multiple, nonredundant effectors to relax the barrier in cells that were chronically exposed to VEGF. One such effector was angiotensin-converting enzyme, which is a member of the renin-angiotensin-aldosterone system (RAAS). Pharmacologically antagonizing either the angiotensin-converting enzyme or the receptor for angiotensin II attenuated VEGF-mediated relaxation of the barrier. Finally, activating the RAAS reduced the efficacy of anti-VEGF. These discoveries provide a plausible mechanistic explanation for the long-standing appreciation that RAAS inhibitors are beneficial for patients with diabetic retinopathy and suggest that antagonizing the RAAS improves patients' responsiveness to anti-VEGF.


Assuntos
Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Sistema Renina-Angiotensina/fisiologia , Retina/metabolismo , Vasos Retinianos/metabolismo , Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Permeabilidade Capilar/efeitos dos fármacos , Células Cultivadas , Humanos , Vasos Retinianos/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
17.
Exp Eye Res ; 197: 108116, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32561481

RESUMO

Platelet-derived growth factor (PDGF) is associated with clinical proliferative vitreoretinopathy (PVR), which is characterized by formation of sub- or epi-retinal membranes that consist of cells including retinal pigment epithelial (RPE) cells and extracellular matrix. RPE cells play an important role in PVR pathogenesis. Previous findings indicated that PDGF receptor (PDGFR)α was essential in experimental PVR induced by fibroblasts. In RPE cells derived from epiretinal membranes from patients with PVR (RPEMs), Akt was activated by PDGF-B but not PDGF-A, which suggested that PDGFRß was the predominant PDGFR isoform expressed in RPEMs. Indeed, CRISPR/Cas9-mediated depletion of PDGFRß in RPEMs attenuated patient vitreous-induced Akt activation and cellular responses intrinsic to PVR including cell proliferation, migration, and contraction. We conclude that PDGFRß appears to be the PVR relevant PDGFR isoform in RPEMs.


Assuntos
DNA/genética , Membrana Epirretiniana/genética , Regulação da Expressão Gênica , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Epitélio Pigmentado da Retina/metabolismo , Western Blotting , Movimento Celular , Proliferação de Células , Células Cultivadas , DNA/metabolismo , Membrana Epirretiniana/metabolismo , Membrana Epirretiniana/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Receptor beta de Fator de Crescimento Derivado de Plaquetas/biossíntese , Epitélio Pigmentado da Retina/patologia
18.
Diabetes ; 69(4): 736-748, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31915155

RESUMO

Diabetic retinopathy is the most common microvascular complication of diabetes, and in the advanced diabetic retinopathy appear vitreal fibrovascular membranes that consist of a variety of cells, including vascular endothelial cells (ECs). New therapeutic approaches for this diabetic complication are urgently needed. Here, we report that in cultured human retinal microvascular ECs, high glucose induced expression of p110δ, which was also expressed in ECs of fibrovascular membranes from patients with diabetes. This catalytic subunit of a receptor-regulated PI3K isoform δ is known to be highly enriched in leukocytes. Using genetic and pharmacological approaches, we show that p110δ activity in cultured ECs controls Akt activation, cell proliferation, migration, and tube formation induced by vascular endothelial growth factor, basic fibroblast growth factor, and epidermal growth factor. Using a mouse model of oxygen-induced retinopathy, p110δ inactivation was found to attenuate pathological retinal angiogenesis. p110δ inhibitors have been approved for use in human B-cell malignancies. Our data suggest that antagonizing p110δ constitutes a previously unappreciated therapeutic opportunity for diabetic retinopathy.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Neovascularização Retiniana/metabolismo , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Endoteliais/efeitos dos fármacos , Fatores de Crescimento Endotelial/farmacologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Glucose/farmacologia , Imuno-Histoquímica , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/farmacologia
19.
Med Res Rev ; 38(6): 1769-1798, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29528507

RESUMO

In recent years, lymphangiogenesis, the process of lymphatic vessel formation from existing lymph vessels, has been demonstrated to have a significant role in diverse pathologies, including cancer metastasis, organ graft rejection, and lymphedema. Our understanding of the mechanisms of lymphangiogenesis has advanced on the heels of studies demonstrating vascular endothelial growth factor C as a central pro-lymphangiogenic regulator and others identifying multiple lymphatic endothelial biomarkers. Despite these breakthroughs and a growing appreciation of the signaling events that govern the lymphangiogenic process, there are no FDA-approved drugs that target lymphangiogenesis. In this review, we reflect on the lessons available from the development of antiangiogenic therapies (26 FDA-approved drugs to date), review current lymphangiogenesis research including nanotechnology in therapeutic drug delivery and imaging, and discuss molecules in the lymphangiogenic pathway that are promising therapeutic targets.


Assuntos
Inibidores da Angiogênese/farmacologia , Linfangiogênese/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Ensaios Clínicos como Assunto , Aprovação de Drogas , Humanos , Transdução de Sinais
20.
BMC Cancer ; 18(1): 222, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29482503

RESUMO

BACKGROUND: Since the first evidence suggesting existence of stem-like cancer cells, the process of cells reprogramming to the stem cell state remains as an attractive tool for cancer stemness research. Current knowledge in the field of cancer stemness, indicates that the microenvironment is a fundamental regulator of cell behavior. With regard to this, we investigated the changes of genome wide gene expression in reprogrammed human colon normal epithelial CRL-1831 and colon carcinoma DLD1 cell lines grown under more physiologically relevant three-dimensional (3D) cell culture microenvironment compared to 2D monolayer. METHODS: Whole genome gene expression changes were evaluated in both cell lines cultured under 3D conditions over a 2D monolayer by gene expression microarray analysis. To evaluate the biological significance of gene expression changes, we performed pathway enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Gene network analysis was used to study relationships between differentially expressed genes (DEGs) in functional categories by the GeneMANIA Cytoscape toolkit. RESULTS: In total, we identified 3228 and 2654 differentially expressed genes (DEGs) for colon normal and cancer reprogrammed cell lines, respectively. Furthermore, the expression of 1097 genes was commonly regulated in both cell lines. KEGG enrichment analysis revealed that in total 129 and 101 pathways for iPSC-CRL-1831 and for CSC-DLD1, respectively, were enriched. Next, we grouped these pathways into three functional categories: cancer transformation/metastasis, cell interaction, and stemness. ß-catenin (CTNNB1) was confirmed as a hub gene of all three functional categories. CONCLUSIONS: Our present findings suggest common pathways between reprogrammed human colon normal epithelium (iPSC-CRL-1831) and adenocarcinoma (CSC-DLD1) cells grown under 3D microenvironment. In addition, we demonstrated that pathways important for cancer transformation and tumor metastatic activity are altered both in normal and cancer stem-like cells during the transfer from 2D to 3D culture conditions. Thus, we indicate the potential of cell culture models enriched in normal and cancer stem-like cells for the identification of new therapeutic targets in cancer treatment.


Assuntos
Neoplasias do Colo/fisiopatologia , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Microambiente Tumoral , Linhagem Celular , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Humanos , Células-Tronco Neoplásicas , beta Catenina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...