Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 13: 908609, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35785364

RESUMO

Background and Objectives: Regional variability in subarachnoid hemorrhage (SAH) care is reported in physician surveys. We aimed to describe variability in SAH care using patient-level data and identify factors impacting hospital outcomes and regional variability in outcomes. Methods: A retrospective multi-center cross-sectional cohort study of consecutive non-traumatic SAH patients in the Vizient Clinical Data Base, between January 1st, 2009 and December 30th, 2018 was performed. Participating hospitals were divided into US regions: Northeast, Midwest, South, West. Regional demographics, co-morbidities, severity-of-illness, complications, interventions and discharge outcomes were compared. Multivariable logistic regression was performed to identify factors independently associated with primary outcomes: hospital mortality and poor discharge outcome. Poor discharge outcome was defined by the Nationwide Inpatient Sample-SAH Outcome Measure, an externally-validated outcome measure combining death, discharge disposition, tracheostomy and/or gastrostomy. Regional variability in the associations between care and outcomes were assessed by introducing an interaction term for US region into the models. Results: Of 109,034 patients included, 24.3% were from Northeast, 24.9% Midwest, 34.9% South, 15.9% West. Mean (SD) age was 58.6 (15.6) years and 64,245 (58.9%) were female. In-hospital mortality occurred in 21,991 (20.2%) and 44,159 (40.5%) had poor discharge outcome. There was significant variability in severity-of-illness, co-morbidities, complications and interventions across US regions. Notable findings were higher prevalence of surgical clipping (18.8 vs. 11.6%), delayed cerebral ischemia (4.3 vs. 3.1%), seizures (16.5 vs. 14.8%), infections (18 vs. 14.7%), length of stay (mean [SD] days; 15.7 [19.2] vs. 14.1 [16.7]) and health-care direct costs (mean [SD] USD; 80,379 [98,999]. vs. 58,264 [74,430]) in the West when compared to other regions (all p < 0.0001). Variability in care was also associated with modest variability in hospital mortality and discharge outcome. Aneurysm repair, nimodipine use, later admission-year, endovascular rescue therapies reduced the odds for poor outcome. Age, severity-of-illness, co-morbidities, hospital complications, and vasopressor use increased those odds (c-statistic; mortality: 0.77; discharge outcome: 0.81). Regional interaction effect was significant for admission severity-of-illness, aneurysm-repair and nimodipine-use. Discussion: Multiple hospital-care factors impact SAH outcomes and significant variability in hospital-care and modest variability in discharge-outcomes exists across the US. Variability in SAH-severity, nimodipine-use and aneurysm-repair may drive variability in outcomes.

2.
Ann Indian Acad Neurol ; 21(3): 223-224, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30258267

RESUMO

Intravenous recombinant tissue plasminogen activator (IV r-tpa) is the standard of care for patients suffering from neurological deficits due to an acute ischemic stroke within 4.5 hours in the absence of intracranial hemorrhage. We report a case of a patient with an acute right middle cerebral artery stroke due to an acute aortic dissection (Stanford Type A) who was treated with full dose IV r-tpa resulting in a good outcome.

3.
Crit Care Res Pract ; 2018: 3237810, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29744226

RESUMO

Extracorporeal membrane oxygenation (ECMO) is a life-saving technique that is widely being used in centers throughout the world. However, there is a paucity of literature surrounding the mechanisms affecting cerebral physiology while on ECMO. Studies have shown alterations in cerebral blood flow characteristics and subsequently autoregulation. Furthermore, the mechanical aspects of the ECMO circuit itself may affect cerebral circulation. The nature of these physiological/pathophysiological changes can lead to profound neurological complications. This review aims at describing the changes to normal cerebral autoregulation during ECMO, illustrating the various neuromonitoring tools available to assess markers of cerebral autoregulation, and finally discussing potential neurological complications that are associated with ECMO.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...