Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 45(10): 3100-3121, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35781677

RESUMO

Senescence determines plant organ lifespan depending on aging and environmental cues. During the endosymbiotic interaction with rhizobia, legume plants develop a specific organ, the root nodule, which houses nitrogen (N)-fixing bacteria. Unlike earlier processes of the legume-rhizobium interaction (nodule formation, N fixation), mechanisms controlling nodule senescence remain poorly understood. To identify nodule senescence-associated genes, we performed a dual plant-bacteria RNA sequencing approach on Medicago truncatula-Sinorhizobium meliloti nodules having initiated senescence either naturally (aging) or following an environmental trigger (nitrate treatment or salt stress). The resulting data allowed the identification of hundreds of plant and bacterial genes differentially regulated during nodule senescence, thus providing an unprecedented comprehensive resource of new candidate genes associated with this process. Remarkably, several plant and bacterial genes related to the cell cycle and stress responses were regulated in senescent nodules, including the rhizobial RpoE2-dependent general stress response. Analysis of selected core nodule senescence plant genes allowed showing that MtNAC969 and MtS40, both homologous to leaf senescence-associated genes, negatively regulate the transition between N fixation and senescence. In contrast, overexpression of a gene involved in the biosynthesis of cytokinins, well-known negative regulators of leaf senescence, may promote the transition from N fixation to senescence in nodules.


Assuntos
Medicago truncatula , Rhizobium , Regulação da Expressão Gênica de Plantas , Medicago truncatula/metabolismo , Fixação de Nitrogênio/fisiologia , Proteínas de Plantas/metabolismo , RNA de Plantas/metabolismo , Rhizobium/genética , Nódulos Radiculares de Plantas/metabolismo , Simbiose/genética , Transcriptoma/genética
2.
Mol Plant Microbe Interact ; 30(5): 399-409, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28437159

RESUMO

Legume plants interact with rhizobia to form nitrogen-fixing root nodules. Legume-rhizobium interactions are specific and only compatible rhizobia and plant species will lead to nodule formation. Even within compatible interactions, the genotype of both the plant and the bacterial symbiont will impact on the efficiency of nodule functioning and nitrogen-fixation activity. The model legume Medicago truncatula forms nodules with several species of the Sinorhizobium genus. However, the efficiency of these bacterial strains is highly variable. In this study, we compared the symbiotic efficiency of Sinorhizobium meliloti strains Sm1021, 102F34, and FSM-MA, and Sinorhizobium medicae strain WSM419 on the two widely used M. truncatula accessions A17 and R108. The efficiency of the interactions was determined by multiple parameters. We found a high effectiveness of the FSM-MA strain with both M. truncatula accessions. In contrast, specific highly efficient interactions were obtained for the A17-WSM419 and R108-102F34 combinations. Remarkably, the widely used Sm1021 strain performed weakly on both hosts. We showed that Sm1021 efficiently induced nodule organogenesis but cannot fully activate the differentiation of the symbiotic nodule cells, explaining its weaker performance. These results will be informative for the selection of appropriate rhizobium strains in functional studies on symbiosis using these M. truncatula accessions, particularly for research focusing on late stages of the nodulation process.


Assuntos
Ecótipo , Medicago truncatula/microbiologia , Sinorhizobium/fisiologia , Diferenciação Celular , Regulação da Expressão Gênica de Plantas , Cinética , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Fixação de Nitrogênio , Fenótipo , Ploidias , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/microbiologia , Simbiose
3.
Plant Cell Environ ; 39(10): 2198-209, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27341695

RESUMO

Legume plants adapt to low nitrogen by developing an endosymbiosis with nitrogen-fixing soil bacteria to form a new specific organ: the nitrogen-fixing nodule. In the Medicago truncatula model legume, the MtCRE1 cytokinin receptor is essential for this symbiotic interaction. As three other putative CHASE-domain containing histidine kinase (CHK) cytokinin receptors exist in M. truncatula, we determined their potential contribution to this symbiotic interaction. The four CHKs have extensive redundant expression patterns at early nodulation stages but diverge in differentiated nodules, even though MtCHK1/MtCRE1 has the strongest expression at all stages. Mutant and knock-down analyses revealed that other CHKs than MtCHK1/CRE1 are positively involved in nodule initiation, which explains the delayed nodulation phenotype of the chk1/cre1 mutant. In addition, cre1 nodules exhibit an increased growth, whereas other chk mutants have no detectable phenotype, and the maintained nitrogen fixation capacity in cre1 requires other CHK genes. Interestingly, an AHK4/CRE1 genomic locus from the aposymbiotic Arabidopsis plant rescues nodule initiation but not the nitrogen fixation capacity. This indicates that different CHK cytokinin signalling pathways regulate not only nodule initiation but also later developmental stages, and that legume-specific determinants encoded by the MtCRE1 gene are required for later nodulation stages than initiation.


Assuntos
Medicago truncatula/microbiologia , Receptores de Superfície Celular/fisiologia , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Arabidopsis/genética , Citocininas/metabolismo , Genoma de Planta , Medicago truncatula/metabolismo , Fixação de Nitrogênio , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Plantas Geneticamente Modificadas/microbiologia , Receptores de Superfície Celular/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Transdução de Sinais , Sinorhizobium/fisiologia , Simbiose
4.
PLoS One ; 10(1): e0116819, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25562779

RESUMO

Cytokinins are phytohormones that regulate many developmental and environmental responses. The Medicago truncatula cytokinin receptor MtCRE1 (Cytokinin Response 1) is required for the nitrogen-fixing symbiosis with rhizobia. As several cytokinin signaling genes are modulated in roots depending on different biotic and abiotic conditions, we assessed potential involvement of this pathway in various root environmental responses. Phenotyping of cre1 mutant roots infected by the Gigaspora margarita arbuscular mycorrhizal (AM) symbiotic fungus, the Aphanomyces euteiches root oomycete, or subjected to an abiotic stress (salt), were carried out. Detailed histological analysis and quantification of cre1 mycorrhized roots did not reveal any detrimental phenotype, suggesting that MtCRE1 does not belong to the ancestral common symbiotic pathway shared by rhizobial and AM symbioses. cre1 mutants formed an increased number of emerged lateral roots compared to wild-type plants, a phenotype which was also observed under non-stressed conditions. In response to A. euteiches, cre1 mutants showed reduced disease symptoms and an increased plant survival rate, correlated to an enhanced formation of lateral roots, a feature previously linked to Aphanomyces resistance. Overall, we showed that the cytokinin CRE1 pathway is not only required for symbiotic nodule organogenesis but also affects both root development and resistance to abiotic and biotic environmental stresses.


Assuntos
Citocininas/metabolismo , Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Aphanomyces/patogenicidade , Citocininas/genética , Glomeromycota/patogenicidade , Medicago truncatula/crescimento & desenvolvimento , Mutação , Nitrogênio/metabolismo , Fenótipo , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Simbiose , Transcriptoma/efeitos dos fármacos
5.
Plant Cell Environ ; 37(3): 658-69, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23961805

RESUMO

PRAF proteins are present in all plants, but their functions remain unclear. We investigated the role of one member of the PRAF family, MtZR1, on the development of roots and nitrogen-fixing nodules in Medicago truncatula. We found that MtZR1 was expressed in all M. truncatula organs. Spatiotemporal analysis showed that MtZR1 expression in M. truncatula roots was mostly limited to the root meristem and the vascular bundles of mature nodules. MtZR1 expression in root nodules was down-regulated in response to various abiotic stresses known to affect nitrogen fixation efficiency. The down-regulation of MtZR1 expression by RNA interference in transgenic roots decreased root growth and impaired nodule development and function. MtZR1 overexpression resulted in longer roots and significant changes to nodule development. Our data thus indicate that MtZR1 is involved in the development of roots and nodules. To our knowledge, this work provides the first in vivo experimental evidence of a biological role for a typical PRAF protein in plants.


Assuntos
Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/metabolismo , Família Multigênica , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/metabolismo , Simbiose , Núcleo Celular/metabolismo , Citosol/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Fluorescência Verde/metabolismo , Medicago truncatula/genética , Meristema/genética , Fixação de Nitrogênio/genética , Especificidade de Órgãos/genética , Filogenia , Proteínas de Plantas/genética , Feixe Vascular de Plantas/genética , Plantas Geneticamente Modificadas , Transporte Proteico , Proteínas Recombinantes/metabolismo , Nódulos Radiculares de Plantas/genética , Especificidade da Espécie , Estresse Fisiológico/genética , Frações Subcelulares/metabolismo , Simbiose/genética , Nicotiana/genética , Nicotiana/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...