Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(15): 10390-10396, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38567334

RESUMO

Proton exchange membrane water electrolysis (PEMWE) is a promising technology for green hydrogen production. However, its large-scale commercial application is limited by its high precious metal loading, because low catalyst loading leads to reduced electron transport channels and decreased water transportation, etc. Herein, we study the electrode level strategy for reducing Ir loading by the optimization of the micro-structure of the anode catalyst layer via SnO2 doping. The pore structure and electron conductive network of the anode catalyst layer can be simultaneously improved by SnO2 doping, under appropriate conditions. Therefore, mass transfer polarization and ohmic polarization of the single cell are reduced. Moreover, the enhanced pore structure and improved electron conduction network collectively contribute to a decreased occurrence of charge transfer polarization. By this strategy, the performance of the single cell with the Ir loading of 1.5 mg cm-2 approaches the single cell with the higher Ir loading of 2.0 mg cm-2, which means that SnO2 doping saves about 25% loading of Ir. This paper provides a perspective at the electrode level to reduce the precious metal loading of the anode in PEMWE.

2.
Macromol Rapid Commun ; 43(20): e2200392, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35678742

RESUMO

Covalent triazine frameworks (CTFs) are among the most valuable frameworks owing to many fantastic properties. However, molten salt-involved preparation of CTFs at 400-600 °C causes debate on whether CTFs represent organic frameworks or carbon. Herein, new CTFs based on the 1,3-dicyanoazulene monomer (CTF-Azs) are synthesized using molten ZnCl2 at 400-600 °C. Chemical structure analysis reveals that the CTF-Az prepared at low temperature (400 °C) exhibits polymeric features, whereas those prepared at high temperatures (600 °C) exhibit typical carbon features. Even after being treated at even higher temperatures, the CTF-Azs retain their rich porosity, but the polymeric features vanish. Although structural de-conformation is a widely accepted outcome in polymer-to-carbon rearrangement processes, the study evaluates such processes in the context of CTF systems. A proof-of-concept study is performed, observing that the as-synthesized CTF-Azs exhibit promising performance as cathodes for Li- and K-ion batteries. Moreover, the as-prepared NPCs exhibit excellent catalytic oxygen reduction reaction (ORR) performance; hence, they can be used as air cathodes in Zn-air batteries. This study not only provides new building blocks for novel CTFs with controllable polymer/carbon features but also offers insights into the formation and structure transformation history of CTFs during thermal treatment.

3.
ChemSusChem ; 15(8): e202200090, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35229489

RESUMO

The electrochemical reduction of carbon dioxide (CO2 ) based on molecular catalysts has attracted more attention, owing to their well-defined active sites and rational structural design. Metal porphyrins (PorMs) have the extended π-conjugated backbone with different transition metals, endowing them with unique CO2 reduction properties. However, few works focus on the investigation of symmetric architecture of PorMs as well as their aggregation behavior to CO2 reduction. In this work, a series of CoII porphyrins (PorCos) with symmetric and asymmetric substituents were used as model of molecular catalysts for CO2 reduction. Owing to the electron donating effect of 2,6-dimethylbenzene (DMB), bandgaps of the complexes became narrower with the increasing number of DMB. As electrocatalysts, all PorCos exhibited promising electrocatalytic CO2 reduction performance. Among the three molecules, asymmetric CoII porphyrin (as-PorCo) showed the lowest onset potential of -288 mV and faradaic efficiencies exceeding 93 % at -0.6 V vs. reversible hydrogen electrode, which is highly competitive among the reported state-of-art porphyrin-based electrocatalysts. The CO2 reduction performance depended on π-π stacking between PorCo with carbon nanotubes (CNTs) and adjacent PorCos, which could be readily controlled by atomically positioned DMB in PorCo. Density functional theory calculations also suggested that the charge density between PorCo and CNT was highest due to the weak steric hindrance in as-PorCo, providing the new insight into molecular design of catalysts for efficient electrochemical CO2 reduction.

4.
Chem Commun (Camb) ; 58(12): 1966-1969, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35044389

RESUMO

A novel pentagon-heptagon paired azulene group that possesses a large dipole moment is immobilized onto a porphyrin. The as-prepared azulene iron porphyrin exhibits a narrower bandgap and higher electrocatalytic CO2 reduction activity than the pristine iron porphyrin. The maximum CO faradaic efficiency reaches 99.9%, which is the state-of-the-art value among molecular catalysts.

5.
Adv Sci (Weinh) ; 9(6): e2104898, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34957678

RESUMO

The robust fully conjugated covalent organic frameworks (COFs) are emerging as a novel type of semi-conductive COFs for optoelectronic and energy devices due to their controllable architectures and easily tunable the highest occupied molecular orbital (HOMO) and the lowest occupied molecular orbital (LUMO) levels. However, the carrier mobility of such materials is still beyond requirements due to limited π-conjugation. In this study, a series of new polyarylether-based COFs are rationally synthesized via a direct reaction between hexadecafluorophthalocyanine (electron acceptor) and octahydroxyphthalocyanine (electron donor). These COFs have typical crystalline layered structures, narrow band gaps as low as ≈0.65 eV and ultra-low resistance (1.31 × 10-6 S cm-1 ). Such COFs can be composed of two different metal-sites and contribute improved carrier mobility via layer-altered staking mode according to density functional theory calculation. Due to the narrow pore size of 1.4 nm and promising conductivity, such COFs and electrochemically exfoliated graphene based free-standing films are fabricated for in-plane micro-supercapacitors, which demonstrate excellent volumetric capacitances (28.1 F cm-3 ) and excellent stability of 10 000 charge-discharge cycling in acidic electrolyte. This study provides a new approach toward dioxin-linked COFs with donor-acceptor structure and easily tunable energy levels for versatile energy storage and optoelectronic devices.

6.
Nanoscale ; 13(31): 13249-13255, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34477733

RESUMO

Developing effective electrocatalysts for the oxygen reduction reaction is of great significance for clean and renewable energy technologies, such as metal-air batteries and fuel cells. Defect engineering is the central focus of this field because the overall catalytic performance crucially depends on highly active defects. For the ORR, topological defects have been proven to have a positive effect. However, because preparation and characterization of such defects are difficult, a basic understanding of the relationship between topological defects and catalytic performance remains elusive. In this study, topological defect-containing Fe/N co-doped mesoporous carbon nanosheets were synthesized using azulene-based sandwich-like polymer nanosheets as the precursor. As electrocatalysts, such porous carbon nanosheets exhibited promising ORR activity, methanol tolerance ability, and stability with a half-wave potential of 841 mV under alkaline conditions, which is superior to those of most of the reported porous carbons. As the air cathode for Zn-air batteries, the catalyst exhibited a peak power density of 153 mW cm-2 and a specific capacity of 628 mA h g-1,which were higher than those of a Pt/C-based Zn-air battery. Density functional theory calculation further proved the positive effect of topological defects on the oxygen reduction activity. These results indicate that bottom-up topological defect engineering could be a new and promising strategy for developing high-performance electrocatalysts.

7.
Polymers (Basel) ; 13(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805228

RESUMO

The preparation of redox-active, ultrathin polymer films as the electrode materials represents a major challenge for miniaturized flexible electronics. Herein, we demonstrated a liquid-liquid interfacial polymerization approach to a coordination polymer films with ultrathin thickness from tri(terpyridine)-based building block and iron atoms. The as-synthesized polymer films exhibit flexible properties, good redox-active and narrow bandgap. After directly transferred to silicon wafers, the on-chip micro-supercapacitors of TpPB-Fe-MSC achieved the high specific capacitances of 1.25 mF cm-2 at 50 mV s-1 and volumetric energy density of 5.8 mWh cm-3, which are superior to most of semiconductive polymer-based micro-supercapacitor (MSC) devices. In addition, as-fabricated on-chip MSCs exhibit typical alternating current (AC) line-filtering performance (-71.3° at 120 Hz) and a short resistance-capacitance (RC) time (0.06 ms) with the electrolytes of PVA/LiCl. This study provides a simple interfacial approach to redox-active polymer films for microsized energy storage devices.

8.
J Am Chem Soc ; 143(17): 6482-6490, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33891414

RESUMO

In hydrogen production, the anodic oxygen evolution reaction (OER) limits the energy conversion efficiency and also impacts stability in proton-exchange membrane water electrolyzers. Widely used Ir-based catalysts suffer from insufficient activity, while more active Ru-based catalysts tend to dissolve under OER conditions. This has been associated with the participation of lattice oxygen (lattice oxygen oxidation mechanism (LOM)), which may lead to the collapse of the crystal structure and accelerate the leaching of active Ru species, leading to low operating stability. Here we develop Sr-Ru-Ir ternary oxide electrocatalysts that achieve high OER activity and stability in acidic electrolyte. The catalysts achieve an overpotential of 190 mV at 10 mA cm-2 and the overpotential remains below 225 mV following 1,500 h of operation. X-ray absorption spectroscopy and 18O isotope-labeled online mass spectroscopy studies reveal that the participation of lattice oxygen during OER was suppressed by interactions in the Ru-O-Ir local structure, offering a picture of how stability was improved. The electronic structure of active Ru sites was modulated by Sr and Ir, optimizing the binding energetics of OER oxo-intermediates.

9.
ACS Appl Mater Interfaces ; 13(7): 9064-9073, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33583175

RESUMO

Among various organic cathode materials, C═O group-enriched structures have attracted wide attention worldwide. However, small organic molecules have long suffered from dissolving in electrolytes during charge-discharge cycles. π-Conjugated microporous polymers (CMPs) become one solution to address this issue. However, the synthesis strategy for CMPs with rich C═O groups and stable backbones remains a challenge. In this study, a novel CMP enriched with C═O units was synthesized through a highly efficient Diels-Alder reaction. The as-prepared CMP exhibited a fused carbon backbone and a semiconductive characteristic with a band gap of 1.4 eV. When used as an organic electrode material in LIBs, the insoluble and robust fused structure caused such CMPs to exhibit remarkable cycling stability (a 96.1% capacity retention at 0.2 A g-1 after 200 cycles and a 94.8% capacity retention at 1 A g-1 after 1500 cycles), superior lithium-ion diffusion coefficient (5.30 × 10-11 cm2 s-1), and excellent rate capability (95.8 mAh g-1 at 1 A g-1). This study provided a novel synthetic method for fabricating quinone-enriched fused CMPs, which can be used as LIB cathode materials.

10.
Chemistry ; 27(20): 6340-6347, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33565175

RESUMO

Coordination polymer frameworks (CPFs) have broad applications due to their excellent features, including stable structure, intrinsic porosity, and others. However, preparation of thin-film CPFs for energy storage and conversion remains a challenge because of poor compatibility between conductive substrates and CPFs and crucial conditions for thin-film preparation. In this work, a CPF film was prepared by the coordination of the anisotropic four-armed ligand and CuII at the liquid-liquid interface. Such film-based micro-supercapacitors (MSCs) are fabricated through high-energy scribing and electrolytes soaking. As-fabricated MSCs displayed high volumetric specific capacitance of 121.45 F cm-3 . Besides, the volumetric energy density of MSCs reached 52.6 mWh cm-3 , which exceeds the electrochemical performance of most reported CPF-based MSCs. Especially, the device exhibited alternating current (AC) line filtering performance (-84.2° at 120 Hz) and a short resistance capacitance (RC) constant of 0.08 ms. This work not only provides a new CPF for MSCs with AC line filtering performance but also paves the way for thin-film CPFs preparation with versatile applications.

11.
Langmuir ; 37(7): 2523-2531, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33570418

RESUMO

Microsupercapacitors (MSCs) have drawn great attention for use as miniaturized electrochemical energy storage devices in portable, wearable, as well as implantable electronics. Many materials have been developed as electrodes for MSCs. However, the thin-film fabrication for most of these materials involves multistep operations, including filtration, spray coating, and sputtering. Most importantly, these methods present challenges for the preparation of thin films at the atomic or molecular scale. Therefore, the understanding of performance of ultrathin-film-based MSCs remains challenge. Herein, a B/N-enriched polymer film is successfully prepared using the photoassisted interfacial approach. The as-synthesized polymer film exhibits typical semiconductive characteristics and can be easily scaled up to a large area of up to tens of square centimeters. This ultrathin polymer film can be directly transferred to silicon wafers to fabricate MSC through laser scribing. The prepared MSC exhibits specific volumetric capacitance as high as 20.9 F cm-3, corresponding to volumetric energy density of 2.9 mWh cm-3 (at 0.1 V s-1). Moreover, the volumetric power density can reach 1461 W cm-3, surpassing most existing semiconductive polymer film-based MSC devices. In addition, the prepared MSC exhibits typical AC line-filtering ability (-67° at 120 Hz). This study offers a facile interfacial approach to preparing semiconductive polymer films with aromatic moieties for microsized energy storage devices.

12.
Chemistry ; 27(6): 2155-2164, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33165980

RESUMO

Transition metal-based nanoparticle-embedded carbon materials have received increasing attention for constructing next-generation electrochemical catalysts for energy storage and conversion. However, designing hybrid carbon materials with controllable hierarchical micro/mesoporous structures, excellent dispersion of metal nanoparticles, and multiple heteroatom-doping remains challenging. Here, a novel pyridinium-containing ionic hypercrosslinked micellar frameworks (IHMFs) prepared from the core-shell unimicelle of s-poly(tert-butyl acrylate)-b-poly(4-bromomethyl) styrene (s-PtBA-b-PBMS) and linear poly(4-vinylpyridine) were used as self-sacrificial templates for confined growth of molybdenum disulfide (MoS2 ) inside cationic IHMFs through electrostatic interaction. After pyrolysis, MoS2 -anchored nitrogen-doped porous carbons possessing tunable hierarchical micro/mesoporous structures and favorable distributions of MoS2 nanoparticles exhibited excellent electrocatalytic activity for hydrogen evolution reaction as well as small Tafel slope of 66.7 mV dec-1 , low onset potential, and excellent cycling stability under acidic condition. Crucially, hierarchical micro/mesoporous structure and high surface area could boost their catalytic hydrogen evolution performance. This approach provides a novel route for preparation of micro/mesoporous hybrid carbon materials with confined transition metal nanoparticles for electrochemical energy conversion.

13.
Nanoscale ; 12(26): 13858-13878, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32426790

RESUMO

For the purpose of redesigning a PEM fuel cell with ultralow Pt loading, this review comprehensively summarizes and comments on recent important findings on ultrathin catalyst layer structures. We introduce recent advances in electrocatalyst research and development (R&D), highlighting the urgency of ultralow Pt loading in the total design of PEM fuel cells. Following that, the reason for a thinner and more ordered electrode structure is presented for the next generation of PEM fuel cells. We then review recent progress in methods for preparing Pt nanoparticles on high-aspect-ratio supports, extended surface area of nanowires (confined agglomerates and nanowires) and ordered arrays. Regarding the ordered arrays, we expatiate on proton conductor arrays and electron conductor arrays, including carbon nanotube-assisted arrays, TiO2 nanotube-assisted arrays, Co-OH-CO3 nanowire-assisted arrays, and pigment red 149-assisted arrays. Challenges related to proton transport and transfer, electron conduction and mass transport are then discussed to supply further research direction.

14.
ACS Appl Mater Interfaces ; 12(23): 26076-26083, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32412233

RESUMO

We report an effective approach to the synthesis of high-content and high-dispersion Pt nanoparticles (NPs) on XC-72 carbon black as a cathode electrocatalyst with improved high-current-density performance in proton exchange membrane fuel cells (PEMFCs). While exceptionally high catalytic activity for oxygen reduction reaction (ORR) was reported based on the rotating disk electrode (RDE) technique, such catalysts do not deliver nearly the same level of performance in PEMFC due to the lack of optimized design of catalyst structures on carbon support. We recently developed a synergistic synthesis method to make exceptionally high-content and finely dispersed Pt catalysts, which showed the highest Pt-electroactive surface area and the highest Pt mass activity for ORR among the electrocatalysts tested. More importantly, the membrane electrode assembly (MEA) made with this catalyst showed excellent performance at current densities higher than 1200 mA cm-2 in a hydrogen-air PEMFC measurement. 195Pt NMR was used to analyze the molecular structures of the metal precursors and to understand the mechanisms of the formation of Pt catalysts at high dispersity and uniformity.

15.
Materials (Basel) ; 13(7)2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32224913

RESUMO

Due to the growing demand for energy and imminent environmental issues, hydrogen energy has attracted widespread attention as an alternative to traditional fossil energy. Platinum (Pt) catalytic hydrogen evolution reaction (HER) is a promising technology to produce hydrogen because the consumed electricity can be generated from renewable energy. To overcome the high cost of Pt, one effective strategy is decreasing the Pt nanoparticle (NP) size from submicron to nano-scale or even down to single atom level for efficient interacting water molecules. Herein, atomically dispersed Pt and ultra-fine Pt NPs embedded porous carbons were prepared through the pyrolysis of Pt porphyrin-based conjugated microporous polymer. As-prepared electrocatalyst exhibit high HER activity with overpotential of down to 31 mV at 10 mA cm-2, and mass activity of up to 1.3 A mgPt-1 at overpotential of 100 mV, which is double of commercial Pt/C (0.66 A mgPt-1). Such promising performance can be ascribed to the synergistic effect of the atomically dispersed Pt and ultra-fine Pt NPs. This work provides a new strategy to prepare porous carbons with both atomically dispersed metal active sites and corresponding metal NPs for various electrocatalysis, such as oxygen reduction reaction, carbon dioxide reduction, etc.

16.
Chemistry ; 26(29): 6525-6534, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31788872

RESUMO

Two-dimensional (2D) porous carbon nanosheets (2DPCs) have attracted great attention for their good porosity and long-distance conductivity. Factors such as templates, precursors, and carbonization-activation methods, directly determine their performance. However, rational design and preparation of porous carbon materials with controlled 2D morphology and heteroatom dopants remains a challenge. Therefore, an ionic polyimide with both sp2 - and sp3 -hybridized nitrogen atoms was prepared as a precursor for fabricating N-doped hexagonal porous carbon nanosheets through a hard-template approach. Because of the large surface area and efficient charge-mass transport, the resulting activated 2D porous carbon nanosheets (2DPCs-a) displayed promising electrocatalytic properties for oxygen reduction reaction (ORR) in alkaline and acidic media, such as ultralow half-wave potential (0.83 vs. 0.84 V of Pt/C) and superior limiting current density (5.42 vs. 5.14 mA cm-2 of Pt/C). As air cathodes in Zn-air batteries, the as-developed 2DPCs-a exhibited long stability and high capacity (up to 614 mA h g-1 ), which are both higher than those of commercial Pt/C. This work provides a convenient method for controllable and scalable 2DPCs fabrication as well as new opportunities to develop high-efficiency electrocatalysts for ORR and Zn-air batteries.

17.
ACS Appl Mater Interfaces ; 11(41): 37779-37786, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31539220

RESUMO

In the past few years, great progress has been made in nonprecious metal catalysts, which hold the potential as alternative materials to replace platinum in proton exchange membrane fuel cells. One type of nonprecious metal catalyst, Fe-N-C, has displayed similar catalytic activity as platinum in rotating disk electrode tests; however, rapid degradation of Fe-N-C catalyst-based fuel cells is always observed, which limits its practical application. Although considerable research has been devoted to study the degradation of the catalyst itself, rather less attention has been paid to the membrane electrode assembly that makes the mechanism of fuel cell degradation remain unclear. In this work, a high-performance Fe-N-C catalyst-based membrane electrolyte assembly is prepared and used to study its degradation mechanism. The fuel cell performs with an initial peak power density as high as 1.1 W cm-2 but suffers a current loss of 52% at 0.4 V over 20 h only. The experimental and DFT calculation results indicate that Fe at active sites of catalysts is attacked by hydroxyl free radicals decomposed from H2O2, which is further leached out, causing an increase in activity loss. The ionomer of the catalyst layer and the membrane is further contaminated by the leached Fe ions, which results in an enlarged membrane resistance and cathode catalyst layer proton conduction resistance, greatly influencing the cell performance. In addition, it has been assumed in previous studies that the quick performance loss of Fe-N-C-based fuel cells is caused by water flooding within the catalyst layer, which is proved to be incorrect in our study through a dry-out experiment.

18.
Phys Chem Chem Phys ; 19(38): 26221-26229, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28932848

RESUMO

A drastic reduction of the Pt loading in the cathode catalyst layers (CCLs) of proton exchange membrane fuel cells (PEMFCs) is much desired. However, a decrease in Pt loading inevitably leads to an unexpected increase of local O2 transport resistance (rLocal) and severely weakens the fuel cell performance, particularly at high current densities. Thus, it is both urgent and meaningful to explore the impacts of the operating conditions on rLocal in CCLs and therefore to clarify the intrinsic mechanism. Herein, we systematically explore the influences of the operating conditions, in terms of the dry O2 mole fraction, the relative humidity, the operating pressure and the temperature on rLocal using limiting current measurements combined with mathematical calculations. The results show that, in contrary to the established rules, rLocal in CCLs of PEMFCs is aggravated when the dry O2 mole fraction or the operating pressure are increased. It is also experimentally found that rLocal in CCLs is alleviated with the increase in the relative humidity or the operating temperature. Moreover, an adsorption controlled solution-diffusion model is proposed to illuminate the local O2 transport behavior in CCLs of PEMFCs, and it accounts for the influence of the dry O2 mole fraction on rLocal in CCLs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...