Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 397: 130501, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417462

RESUMO

A robust modeling approach for predicting heavy metal removal by sulfate-reducing bacteria (SRB) is currently missing. In this study, four machine learning models were constructed and compared to predict the removal of Cd, Cu, Pb, and Zn as individual ions by SRB. The CatBoost model exhibited the best predictive performance across the four subsets, achieving R2 values of 0.83, 0.91, 0.92, and 0.83 for the Cd, Cu, Pb, and Zn models, respectively. Feature analysis revealed that temperature, pH, sulfate concentration, and C/S (the mass ratio of chemical oxygen demand to sulfate) had significant impacts on the outcomes. These features exhibited the most effective metal removal at 35 °C and sulfate concentrations of 1000-1200 mg/L, with variations observed in pH and C/S ratios. This study introduced a new modeling approach for predicting the treatment of metal-containing wastewater by SRB, offering guidance for optimizing operational parameters in the biological sulfidogenic process.


Assuntos
Desulfovibrio , Metais Pesados , Cádmio , Chumbo , Sulfatos
2.
Water Res ; 243: 120339, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37482009

RESUMO

Photosensitized biohybrid system (PBS) enables bacteria to exploit light energy harvested by semiconductors for rapid pollutants transformation, possessing a promising future for water reclamation. Maintaining a biocompatible environment under photocatalytic conditions is the key to developing PBS-based treatment technologies. Natural microbial cells are surrounded by extracellular polymeric substances (EPS) that either be tightly bound to the cell wall (i.e., tightly bound EPS, tbEPS) or loosely associated with cell surface (i.e., loosely bound EPS, lbEPS), which provide protection from unfavorable environment. We hypothesized that providing EPS fractions can enhance bacterial viability under adverse environment created by photocatalytic reactions. We constructed a model PBS consisting of Shewanella oneidensis and CdS using Cr(VI) as the target pollutant. Results showed complete removal of 25 mg/L Cr(VI) within 90 min without an electron donor, which may mainly rely on the synergistic effect of CdS and bacteria on photoelectron transfer. Long-term cycling experiment of pristine PBS and PBS with extra EPS fractions (including lbEPS and tbEPS) for Cr(VI) treatment showed that PBS with extra lbEPS achieved efficient Cr(VI) removal within five consecutive batch treatment cycles, compared to the three cycles both in pristine PBS and PBS with tbEPS. After addition of lbEPS, the accumulation of reactive oxygen species (ROS) was greatly reduced via the EPS-capping effect and quenching effect, and the toxic metal internalization potential was lowered by complexation with Cd and Cr, resulting in enhanced bacterial viability during photocatalysis. This facile and efficient cytoprotective method helps the rational design of PBS for environmental remediation.


Assuntos
Poluentes Ambientais , Shewanella , Oxirredução , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Cromo/metabolismo , Shewanella/metabolismo , Poluentes Ambientais/metabolismo
3.
Environ Pollut ; 328: 121592, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37044254

RESUMO

The widespread distribution of nanoplastics and dissolved organic matter (DOM) in sewage raises concerns about the potential impact of DOM on the bioavailability of nanoplastics. In this study, the effects of different sizes (100 nm and 350 nm) of polystyrene nanoplastics (PS-NPs, 50 mg/L) and combined with 10 mg/L or 50 mg/L DOMs (fulvic acid, humic acid and sodium alginate) on the growth and denitrification ability of Thiobacillus denitrificans were investigated. Results showed that 100 nm PS-NPs (50 mg/L) cause a longer delay in the nitrate reduction (3 days) of T. denitrificans than 350 nm PS-NPs (2 days). Furthermore, the presence of DOM exacerbated the adverse effect of 100 nm PS-NPs on denitrification, resulting in a delay of 1-4 days to complete denitrification. Fulvic acid (50 mg/L) and humic acid (50 mg/L) had the most significant adverse effect on increasing 100 nm PS-NPs (50 mg/L), causing a reduction of 20 mmol/L nitrate by T. denitrificans in nearly 7 days. It is noteworthy that the presence of DOM did not modify the adverse effect of 350 nm PS-NPs on denitrification. Further analysis of toxicity mechanism of PS-NPs revealed that they could induce reactive oxygen species (ROS) and suppressed denitrification gene expression. The results suggested that DOM may assist in the cellular internalization of PS-NPs by inhibiting PS-NPs aggregation, leading to the increased ROS levels and accelerated T. denitrificans death. This study highlights the potential risk of nanoplastics to autotrophic denitrifying bacteria in the presence of DOM and provides new insights for the treatment of nitrogen-containing wastewater by T. denitrificans.


Assuntos
Thiobacillus , Thiobacillus/metabolismo , Matéria Orgânica Dissolvida , Microplásticos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Nitratos/toxicidade , Nitratos/metabolismo , Poliestirenos/metabolismo
4.
Environ Pollut ; 327: 121516, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36972810

RESUMO

Efficient remedies for living organisms including bacteria to counteract cadmium (Cd2+) toxicity are still highly needed. Plant toxicity studies have showed that exogenous S(-II) (including hydrogen sulfide and its ionic forms, i.e., H2S, HS-, and S2-) application can effectively alleviate adverse effects of Cd stress, but whether S(-II) could mitigate bacterial Cd toxicity remains unclear. In this study, S(-II) was applied exogenously to Cd-stressed Shewanella oneidensis MR-1 and the results showed that S(-II) can significantly reactivate impaired physiological processes including growth arrest and enzymatic ferric (Fe(III) reduction inhibition. The efficacy of S(-II) treatment is negatively correlated with the concentration and time length of Cd exposure. Energy-dispersive X-ray (EDX) analysis suggested the presence of cadmium sulfide inside cells treated with S(-II). Both compared proteomic analysis and RT-qPCR showed that enzymes associated with sulfate transport, sulfur assimilation, methionine, and glutathione biosynthesis were up-regulated in both mRNA and protein levels after the treatment, indicating S(-II) may induce the biosynthesis of functional low-molecular-weight (LMW) thiols to counteract Cd toxicity. Meanwhile, the antioxidant enzymes were positively modulated by S(-II) and thus the activity of intracellular reactive oxygen species was attenuated. The study demonstrated that exogenous S(-II) can effectively alleviate Cd stress for S. oneidensis likely through inducing intracellular trapping mechanisms and modulating cellular redox status. It suggested that S(-II) may be a highly effective remedy for bacteria such as S. oneidensis under Cd-polluted environments.


Assuntos
Antioxidantes , Compostos Férricos , Antioxidantes/metabolismo , Compostos Férricos/metabolismo , Cádmio/toxicidade , Proteômica , Oxirredução
5.
Sci Total Environ ; 869: 161814, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36708836

RESUMO

Redox-dynamic environments such as river floodplains and paddy fields have been demonstrated to be important sources of CdS colloids. To date, the aggregation kinetics of CdS colloids had not yet been studied, and the structure and properties of macromolecules on the interaction between different macromolecules and CdS colloids, as well as the aggregation behavior of CdS colloids are unclear. This study investigated the colloidal stability of CdS colloids in model aqueous systems with various solution chemistry and representative of macromolecules. The results showed that increased electrolyte concentration destabilized CdS colloids by charge screening, with the cationic effect following Ca2+ > Mg2+ > K+ > Na+; Higher solution pH stabilized CdS colloids by raising the critical coagulation concentration from 33 to 56 mM NaCl. Electron microscopy and spectroscopy verified the strong interaction between macromolecules and CdS colloids, and macromolecule adsorbed on the surface of CdS to form a protective layer called "NOM corona". The interaction between macromolecules and CdS induced distinct aggregation behaviors in NaCl and CaCl2 solutions. The steric repulsion generated by "NOM corona" significantly stabilized CdS colloids in NaCl solution, and the stabilizing order was consistent with the adsorbing capacity of macromolecules on CdS colloids, namely Bovine serum albumin (BSA) > sodium alginate (SA) > calf thymus DNA (DNA) > Suwannee River humic acid (HA). BSA and DNA also inhibited CdS colloids aggregation in the CaCl2 solution due to the balance of steric hindrance, cation bridging, and electrostatic repulsion. For HA and SA, Ca2+ bridging and EDL compression contributed to their destabilization of CdS colloids in CaCl2 solution. Macromolecules concentration affect corona formation that alter stability of CdS colloids. There results showed that the complex influences of solution chemistry and macromolecules on fate and transport of CdS colloids in environment. The findings will help to understand the potential risks of CdS colloids in environment.

6.
Sci Total Environ ; 861: 160551, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36460112

RESUMO

Schwertmannite (Sch) is an iron-hydroxysulfate mineral commonly found in acid mine drainage contaminated environment. The transformation mechanism of Sch mediated by pure cultured iron-reducing bacteria (FeRB) or sulfate-reducing bacteria (SRB) has been studied. However, FeRB and SRB widely coexist in the environment, the mechanism of Sch transformation by the consortia of FeRB and SRB is still unclear. This study investigated the Sch reduction by co-cultured Shewanella oneidensis (FeRB) and Desulfosporosinus meridiei (SRB). The results showed that co-culture of FeRB and SRB could accelerate the reductive dissolution of Sch, but not synergistically, and there were two distinct phases in the reduction of Sch mediated by FeRB and SRB: an initial phase in which FeRB predominated and Fe3+ in Sch was reduced, accompanied with the release of SO42-, and the detected secondary minerals were mainly vivianite; the second phase in which SRB predominated and mediated the reduction of SO42-, producing minerals including mackinawite and siderite in addition to vivianite. Compared to pure culture, the abundance of FeRB and SRB in the consortia decreased, and more minerals aggregated inside and outside the cell; correspondingly, the transcription levels of genes (cymA, omcA, and mtrCBA) related to Fe3+ reduction in co-culture was down-regulated, while the transcription levels of SO42--reducing genes (sat, aprAB, dsr(C)) was generally up-regulated. These phenomena suggested that secondary minerals produced in co-culture limited but did not inhibit bacterial growth, and the presence of SRB was detrimental to dissimilatory Fe3+ reduction, while existed FeRB was in favor of dissimilatory SO42- reduction. SRB mediated SO42- reduction by up-regulating the expression of SO42- reduction-related genes when its abundance was limited, which may be a strategy to cope with external coercion. These findings allow for a better understanding of the process and mechanism of microbial mediated reduction of Sch in the environment.


Assuntos
Desulfovibrio , Ferro , Ferro/metabolismo , Técnicas de Cocultura , Compostos Férricos/metabolismo , Minerais/metabolismo , Desulfovibrio/metabolismo , Bactérias/metabolismo , Sulfatos/metabolismo , Oxirredução
7.
J Hazard Mater ; 402: 123717, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33254757

RESUMO

Microbial sulfidization of arsenic (As)-bearing jarosite involves complex processes and is yet to be fully elucidated. Here, we investigated the behavior of As during reductive dissolution of As(V)-bearing jarosite by a pure sulfate reducing bacterium with or without dissolved SO42- amendment. Changes of aqueous chemistry, mineralogical characteristics, and As speciation were examined in batch experiments. The results indicated that jarosite was mostly replaced by mackinawite in the system with added SO42-. In the medium without additional SO42-, mackinawite, vivianite, pyrite, and magnetite formed as secondary Fe minerals, though 24.55 % of total Fe was in form of an aqueous Fe2+ phase. The produced Fe2+ in turn catalyzed the transformation of jarosite. At the end of the incubation, 41.99 % and 48.10 % of As in the solid phase got released into the aqueous phase in the systems with and without added SO42-, respectively. The addition of dissolved SO42- mitigated the mobilization of As into the aqueous phase. In addition, all As5+ on the solid surface was reduced to As3+ during the microbial sulfidization of As-bearing jarosite. These findings are important for a better understanding of geochemical cycling of elements As, S, and Fe in acid mine drainage and acid sulfate soil environments.


Assuntos
Arsênio , Compostos Férricos , Oxirredução , Solubilidade , Sulfatos
8.
Ecotoxicol Environ Saf ; 202: 110921, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32800256

RESUMO

Jarosite is one of the iron oxyhydroxysulfate minerals that are commonly found in acid mine drainage (AMD) systems. In natural environments, phosphate and sulfate reducing bacteria (SRB) may be coupled to jarosite reduction and transformation. In this research, the effect of phosphate on jarosite reduction by SRB and the associated secondary mineral formation was studied using batch experiments. The results indicated that Fe3+ is mainly reduced by biogenic S2- in this experiment. The effect of PO43- on jarosite reduction by SRB involved not only a physico-chemical factor but also a microbial factor. Phosphate is an essential nutrient, which can support the activity of SRB. In the low PO43- treatment, the production of total Fe2+ was found to be slightly larger than that in the zero PO43- treatment. Sorption of PO43- effectively elevated jarosite stability via the formation of inner sphere complexes, which, therefore, inhibited the reductive dissolution of jarosite. At the end of the experiment, the amounts of total Fe2+ accumulation were determined to be 4.54 ± 0.17a mM, 4.66 ± 0.22a mM, 3.91 ± 0.04b mM and 2.51 ± 0.10c mM (p < 0.05) in the zero, low, medium and high PO43- treatments, respectively, following the order of low PO43- treatment > zero PO43- treatment > medium PO43- treatment > high PO43- treatment. PO43- loading modified the transformation pathways for the jarosite mineral, as well. In the zero PO43- treatment, the jarosite diffraction lines disappeared, and mackinawite dominated at the end of the experiment. Compared to PO43--free conditions, vivianite was found to become increasingly important at higher PO43- loading conditions. These findings indicate that PO43- loading can influence the broader biogeochemical functioning of AMD systems by impacting the reactivity and mineralization of jarosite mineral.


Assuntos
Bactérias/metabolismo , Compostos Férricos/química , Fosfatos/química , Sulfatos/química , Adsorção , Biodegradação Ambiental , Compostos Ferrosos , Ferro/química , Compostos de Ferro/química , Minerais , Mineração , Oxirredução
9.
J Biosci Bioeng ; 130(2): 179-186, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32381439

RESUMO

The sediment-water interface is not only an important location for substrate conversion in a mariculture system, but also a major source of eutrophication. This study aimed to clarify the characteristics of inorganic nitrogen (ammonia, nitrite and nitrate) removal by Marichromatium gracile YL28 in the presence of both organic nitrogen and inorganic nitrogen. The results showed that, in the presence of peptone or urea, seaweed oligosaccharides (SOS) effectively enhanced the ammonia removal capacity of YL28 (6.42 mmol/L) and decreased the residual rate by 54.04% or 8.17%, respectively. With increasing peptone or urea concentrations, the removal of both ammonia and nitrate was gradually inhibited, and the residual rates of ammonia and nitrate reached 22.56-34.36% and 12.03-15.64% in the peptone system and 20.65-24.03% and 12.20-13.21% in the urea system, respectively. However, in the control group the residual rates of ammonia and nitrate reached 11.97% and 5.12%, respectively. In addition, the concentrations of peptone and urea did not affect nitrite removal, and YL28 displayed better cell growth and nitrogen removal activity in the presence of bait and SOS. Overall, the ability of YL28 to remove inorganic nitrogen was enhanced in the presence of organic nitrogen.


Assuntos
Aquicultura , Chromatiaceae/metabolismo , Nitrogênio/química , Nitrogênio/isolamento & purificação , Peptonas/farmacologia , Ureia/farmacologia , Água/química , Amônia/isolamento & purificação , Amônia/metabolismo , Desnitrificação/efeitos dos fármacos , Nitratos/isolamento & purificação , Nitratos/metabolismo , Nitritos/isolamento & purificação , Nitritos/metabolismo
10.
Chemosphere ; 239: 124822, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31726527

RESUMO

Arsenic (As) methylation is regarded as an efficient strategy for As contamination remediation by As volatilization. However, most microorganisms display low As volatilization efficiency, which is possibly linked to As efflux transporters competing for cytoplasmic As(III) as a substrate. Here, we developed two types of As biosensors in Escherichia coli to compare the As efflux rate of three efflux transporters and to further investigate the correlation between As efflux rates and As volatilization. The engineered As-sensitive E. coli AW3110 expressing arsBRP, acr3RP or arsBEC displayed a higher As resistance compared to the control. The fluorescence intensity was in a linear correlation in the range of 0-2.0 µmol/L of As(III). The intracellular As(III) concentration was negatively related to As efflux activity of As efflux transporter, which was consistent with the As resistance assays. Moreover, arsM derived from R. palustris CGA009 was subsequently introduced to construct an E. coli AW3110 co-expressing arsB/acr3 and arsM, which exhibited higher As(III) resistance, lower fluorescence intensity and intracellular As concentration compared to the engineered E. coli AW3110 expressing only arsB/acr3. The As volatilization efficiency was negatively related to As efflux activity of efflux transporters, the recombinants without arsB/acr3 displayed the highest rate of As volatilization. This study provided new insights into parameters affecting As volatilization with As efflux being the main limiting factor for As methylation and subsequent volatilization in many microorganisms.


Assuntos
Arsênio/metabolismo , Arsenitos/metabolismo , Escherichia coli/metabolismo , Bombas de Íon/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Técnicas Biossensoriais , Catálise , Escherichia coli/genética , Bombas de Íon/genética , Proteínas de Membrana Transportadoras/genética , Metilação , Volatilização
11.
Appl Microbiol Biotechnol ; 103(6): 2809-2820, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30666362

RESUMO

Enzymes could act as a useful tool for environmental bioremediation. Arsenic (As) biomethylation, which can convert highly toxic arsenite [As(III)] into low-toxic volatile trimethylarsine, is considered to be an effective strategy for As removal from contaminated environments. As(III) S-adenosylmethyltransferase (ArsM) is a key enzyme for As methylation; its properties and preparation are crucial for its wide application. Currently, ArsM is usually purified as a His-tag fusion protein restricting widespread use due to high costs. In this study, to greatly reduce the cost and simplify the ArsM preparation process, an Elastin-like polypeptide (ELP) tag was introduced to construct an engineered Escherichia coli (ArsM-ELP). Consequently, a cost-effective and simple non-chromatographic purification approach could be used for ArsM purification. The enzymatic properties of ArsM-ELP were systematically investigated. The results showed that the As methylation rate of purified ArsM-ELP (> 35.49%) was higher than that of E. coli (ArsM-ELP) (> 10.39%) when exposed to 25 µmol/L and 100 µmol/L As(III), respectively. The purified ArsM-ELP was obtained after three round inverse transition cycling treatment in 2.0 mol/L NaCl at 32 °C for 10 min with the yield reaching more than 9.6% of the total protein. The optimal reaction temperature, pH, and time of ArsM-ELP were 30 °C, 7.5 and 30 min, respectively. The enzyme activity was maintained at over 50% at 45 °C for 12 h. The enzyme specific activity was 438.8 ± 2.1 U/µmol. ArsM-ELP had high selectivity for As(III). 2-Mercaptoethanol could promote enzyme activity, whereas SDS, EDTA, Fe2+, and Cu2+ inhibited enzyme activity, and Mg2+, Zn2+, Ca2+, and K+ had no significant effects on it.


Assuntos
Arsênio/metabolismo , Elastina/biossíntese , Escherichia coli/genética , Metiltransferases/biossíntese , Biodegradação Ambiental , Elastina/genética , Escherichia coli/enzimologia , Engenharia Genética , Metilação , Metiltransferases/genética , Peptídeos/genética , Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , S-Adenosilmetionina/metabolismo , Temperatura
12.
Appl Microbiol Biotechnol ; 102(14): 6247-6255, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29789881

RESUMO

Innovative methods to lower arsenic (As) exposure are sought. The As regulatory protein (ArsR) is reported of having high affinity and specificity to arsenite [As(III)]. Rhodopseudomonas palustris CGA009 is a good model organism for studying As detoxification due to at least three ars operons and four diverse arsRRP1-4 on the genome. In this study, four Escherichia coli harboring arsRRP1-4 derived from CGA009 were engineered and tested regarding their As resistance. The results showed that E. coli (arsRRP2) displayed robust As(III) resistance, and its growth inhibition rate was only 2.9% when exposed to 3.0 mmol/L As(III). At pH 7.0, E. coli (arsRRP2) showed an enhanced As adsorption capacity. As(III) (2.32 mg/g (dry weight, dw)) and 1.47 mg/g arsenate [As(V)] was adsorbed representing a 4.2-fold and 1.3-fold increase respectively compared to the control strain. The adsorption process was well fitted to Langmuir isothermal mode. E. coli (arsRRP2) (1.0~12.0 g/L) could remove 30.3~82.2% of As (III) when exposed to 10 µg/L As(III). No increase in absorption to copper(II), zinc(II), chromium(III), and lead(II) could be detected. Our studies revealed that arsRRP1-4 from CGA009 could confer As(III) resistance; E. coli (arsRRP2) displayed the highest As resistance, selectivity, and adsorption capacity within a wider pH (5.0~9.0) and salinity (0~15.0 g/L NaCl) range, especially important as it could remove As(III) from low concentration As-containing water.


Assuntos
Arsênio/toxicidade , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas Recombinantes/genética , Rodopseudomonas/genética , Transativadores/genética , Adsorção , Arsênio/metabolismo , Óperon
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...