Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38781476

RESUMO

Two-dimensional (2D) molybdenum disulfide (MoS2), one of the most extensively studied van der Waals (vdW) materials, is a significant candidate for electronic materials in the post-Moore era. MoS2 exhibits various phases, among which the 1T‴ phase possesses noncentrosymmetry. 1T‴-MoS2 was theoretically predicted to be ferroelectric a decade ago, but this has not been experimentally confirmed until now. Here, we have prepared high-purity 2D 1T‴-MoS2 crystals and experimentally confirmed the room-temperature out-of-plane ferroelectricity. The noncentrosymmetric crystal structure in 2D 1T‴-MoS2 was convinced by atomically resolved transmission electron microscopic imaging and second harmonic generation (SHG) measurements. Further, the ferroelectric polarization states in 2D 1T‴-MoS2 can be switched using piezoresponse force microscopy (PFM) and electrical gating in field-effect transistors (FETs). The ferroelectric-to-paraelectric transition temperature is measured to be about 350 K. Theoretical calculations have revealed that the ferroelectricity of 2D 1T‴-MoS2 originates from the intralayer charge transfer of S atoms within the layer. The discovery of intrinsic ferroelectricity in the 1T‴ phase of MoS2 further enriches the properties of this important vdW material, providing more possibilities for its application in the field of next-generation electronic devices.

2.
Nano Lett ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767925

RESUMO

Two-dimensional (2D) ferroelectrics promise ultrathin flexible nanoelectronics, typically utilizing a metal-ferroelectric-metal sandwich structure. Electrodes can either contribute free carriers to screen the depolarization field, enhancing nanoscale ferroelectricity, or induce charge doping, disrupting the long-range crystalline order. We explore electrodes' dual roles in 2D ferroelectric capacitors, supported by first-principles calculations covering a range of electrode work functions. Our results reveal volcano-type relationships between ferroelectric-electrode binding affinity and work function, which are further unified by a quadratic scaling between the binding energy and the transferred interfacial charge. At the monolayer limit, charge transfer dictates the ferroelectric stability and switching properties. This general characteristic is confirmed in various 2D ferroelectrics including α-In2Se3, CuInP2S6, and SnTe. As the ferroelectric layer's thickness increases, the capacitor stability evolves from a charge-transfer-dominated state to a screening-dominated state. The delicate interplay between these two effects has important implications for 2D ferroelectric capacitor applications.

3.
Nanoscale Horiz ; 8(9): 1205-1216, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37381975

RESUMO

Long-range ferroelectric crystalline order usually fades away as the spatial dimension decreases, and hence there are few two-dimensional (2D) ferroelectrics and far fewer one-dimensional (1D) ferroelectrics. Due to the depolarization field, low-dimensional ferroelectrics rarely possess the polarization along the direction of reduced dimensionality. Here, using first-principles density functional theory, we explore the structural evolution of nanoribbons of varying widths constructed by cutting a 2D sheet of ferroelectric α-III2VI3 (III = Al, Ga, In; VI = S, Se, Te). We discover a one-dimensional ferroelectric nanothread (1DFENT) of ultrasmall diameter with both axial and radial polarization, potentially enabling ultra-dense data storage with a 1D domain of just three unit cells being the functional unit. The polarization in 1DFENT of Ga2Se3 exhibits an unusual piezoelectric response: a stretching stress along the axial direction will increase both the axial and radial polarization, referred to as the auxetic piezoelectric effect. Utilizing the intrinsically flat electronic bands, we demonstrate the coexistence of ferroelectricity and ferromagnetism in 1DFENT and a counterintuitive charge-doping-induced metal-to-insulator transition. The 1DFENT with both axial and radial polarization offers a counterexample to the Mermin-Wagner theorem in 1D and suggests a new platform for the design of ultrahigh-density memory and the exploration of exotic states of matter.

4.
Nanoscale Horiz ; 8(5): 616-623, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36945876

RESUMO

The integration of ferroelectrics that exhibit high dielectric, piezoelectric, and thermal compatibility with the mainstream semiconductor industry will enable novel device types for widespread applications, and yet there are few silicon-compatible ferroelectrics suitable for device downscaling. We demonstrate with first-principles calculations that the enhanced depolarization field at the nanoscale can be utilized to soften unswitchable wurtzite III-V semiconductors, resulting in ultrathin two-dimensional (2D) sheets possessing reversible polarization states. A 2D sheet of AlSb consisting of three atomic planes is identified to host both ferroelectricity and antiferroelectricity, and the tristate switching is accompanied by a metal-semiconductor transition. The thermodynamic stability and potential synthesizability of the triatomic layer are corroborated with phonon spectrum calculations, ab initio molecular dynamics simulations, and variable-composition evolutionary structure search. We propose a 2D AlSb-based homojunction field effect transistor that supports three distinct and nonvolatile resistance states. This new class of III-V semiconductor-derived 2D materials with dual ferroelectricity and antiferroelectricity opens up the opportunity for nonvolatile multibit-based integrated nanoelectronics.

5.
Anal Chem ; 95(2): 1318-1326, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36577742

RESUMO

Raman spectra are often masked by strong fluorescence, which severely hinders the applications of Raman spectroscopy. Herein, for the first time, we report ionic-wind-enhanced Raman spectroscopy (IWERS) incorporated with photobleaching (PB) as a noninvasive approach to detect fluorescent and vulnerable samples without a substrate. In this study, ionic wind (IW) generated by needle-net electrodes transfers charges to the sample surface in air on the scale of millimeters rather than nanometers in surface-enhanced Raman spectroscopy. Density functional theory calculations reveal that the ionic particles in IW increase the susceptibility of the sample molecules, thus enhancing the Raman signals. Meanwhile, the incorporation of IW with PB yields a synergistic effect to quench fluorescence. Therefore, this approach can improve the signal-to-noise ratio of Raman peaks up to three times higher than that with only PB. At the same time, IWERS can avoid sample pollution and destruction without substrates as well as high laser power. For archeological samples and a red rock as an analogue to Mars geological samples, IWERS successfully identified weak but key Raman peaks, which were masked by strong florescence. It suggests that IWERS is a promising tool for characterizations in the fields of archeology, planetary science, biomedicine, and soft matter.


Assuntos
Lasers , Análise Espectral Raman , Análise Espectral Raman/métodos , Razão Sinal-Ruído , Fotodegradação
6.
Mater Horiz ; 8(12): 3387-3393, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34672306

RESUMO

The coexistence of metallicity and ferroelectricity has been an intriguing and controversial phenomenon as these two material properties are considered incompatible in bulk. We clarify the concept of the ferroelectric metal by revisiting the original definitions for ferroelectric and metal. Two-dimensional (2D) ferroelectrics with out-of-plane polarization can be engineered via layer stacking to a genuine ferroelectric metal characterized by switchable polarization and non-zero density of states at the Fermi level. We demonstrate that 2D ferroelectric metals can serve as electrically-tunable, high-quality electrocatalysts.

7.
Molecules ; 25(7)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230888

RESUMO

Dehydrogenation of H3COH and H2O are key steps of methanol steam reforming on transition metal surfaces. Oxhydryl dehydrogenation reactions of HxCOH (x = 0-3) and OH on Ni (111) were investigated by DFT calculations with the OptB88-vdW functional. The transition states were searched by the climbing image nudged elastic band method and the dimer method. The activation energies for the dehydrogenation of individual HxCOH* are 68 to 91 kJ/mol, and reduced to 12-17 kJ/mol by neighboring OH*. Bader charge analysis showed the catalysis role of OH* can be attributed to the effect of hydrogen bond (H-bond) in maintaining the charge of oxhydryl H in the reaction path. The mechanism of H-bond catalysis was further demonstrated by the study of OH* and N* assisted dehydrogenation of OH*. Due to the universality of H-bond, the H-bond catalysis shown here, is of broad implication for studies of reaction kinetics.


Assuntos
Metanol/química , Níquel/química , Catálise , Química Computacional , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Propriedades de Superfície , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...