Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1390936, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39297015

RESUMO

Goji berries are a small-fruited shrub with industrial importance whose fruit considered beneficial in both fresh and dried forms. Current germplasms of goji berries include small fruits with a short shelf life, less sweet and bitter taste, and a lack of appropriate genetic information. This study aimed to employ whole genome resequencing to generate an ultra-dense bin linkage map and to elucidate the genetic basis of goji fruit quality and size using quantitative trait loci (QTL) mapping analysis in a cross-pollinated hybrid population. To achieve this goal, human sensory tests were carried out to determine the bitter taste (BT) and sweet taste (ST), and to quantify the soluble solid content (SSC), fruit firmness (FF), and fruit size-related traits of fresh goji fruits over three or four years. The results revealed that the goji bin linkage map based on resequencing spanned a total length of 966.42 cM and an average bin interval of 0.03 cM. Subsequent variant calling and ordering resulted in 3,058 bins containing 35,331 polymorphic markers across 12 chromosomes. A total of 99 QTLs, with individual loci in different environments explaining a phenotypic variance of 1.21-16.95% were identified for the studied traits. Ten major effects, including colocalized QTLs corresponding to different traits, were identified on chromosomes 1, 3, 5, 6, 7, and 8, with a maximum Logarithm of Odds (LOD) of 29.25 and 16.95% of explained phenotypic variance (PVE). In addition, four stable loci, one for FF, one for fruit weight (FW), and two for fruit shape index (FSI), were mainly mapped on chromosomes 5, 6, and 7, elucidating 2.10-16.95% PVE. These findings offer valuable insights into the genetic architecture of goji fruit traits along with identified specific loci and markers to further improve and develop sweeter, less bitter and larger fruited goji berry cultivars with extended shelf life.

2.
Biosci Biotechnol Biochem ; 88(4): 437-444, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38171531

RESUMO

Pleurotus citrinopileatus is a low-cholesterol, protein-rich, and high-nutrient food. The molecular mechanisms of the compounds and coloration have not been reported. Metabolome and transcriptome were used to clarify the molecular mechanisms of key compounds biosynthesis. K-means analysis identified 19 compounds in P. citrinopileatus, mainly lipids and alkaloids in class 8. In addition, 84 lipids were higher and that the different compounds were mainly enriched in linoleic acid metabolism. A total of 14 compounds detected in the linoleic acid metabolism pathway were significantly up-regulated, while 3 sterol regulatory element binding protein (SREBP) transcription factors were screened. Tryptophan metabolism and riboflavin biosynthesis pathway analysis indicated that 3 Unigenes had tryptophan decarboxylase similar elements, which belonged to tyrosine decarboxylase 1. Moreover, CL15618.Contig5_All had high homology with MFS. In conclusion, the expression of 3 SREBP, the synthesis of isobavachalcone D, and the regulation of riboflavin transport by MCH5 were the reasons for fatty acid accumulation and yellow cap formation in the P. citrinopileatus.


Assuntos
Agaricales , Pleurotus , Ácidos Graxos , Proteína de Ligação a Elemento Regulador de Esterol 1 , Ácido Linoleico , Proteínas de Ligação a Elemento Regulador de Esterol , Riboflavina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA