Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Adv ; 9(45): eadi6086, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37939180

RESUMO

Physical aging is a long-lasting research hot spot in the glass community, yet its long-term effects remain unclear because of the limited experimental time. In this study, we discover the extraordinary aging effects in five typical lunar glassy particles with diameters ranging from about 20 to 53 micrometers selected from Chang'e-5 lunar regolith. It is found that geological time scales' aging can lead to unusually huge modulus enhancements larger than 73.5% while much weaker effects on hardness (i.e., varies decoupling evolutions of Young's modulus and hardness during aging) in these lunar glassy samples. Such extraordinary aging effects are primarily attributed to the natural selected complex glassy compositions and structures, consistent with high entropy and minor element doping criteria, prevailing under the special lunar conditions and the extensive aging time for the lunar glasses. This study offers valuable insights for developing high-performance and stable glassy materials for radiation protection and advanced space explorations.

2.
Adv Mater ; 35(40): e2304490, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37562376

RESUMO

The prevalence of wide-bandgap (WBG) semiconductors allows modern electronic devices to operate at much higher frequencies. However, development of soft magnetic materials with high-frequency properties matching the WBG-based devices remains challenging. Here, a promising nanocrystalline-amorphous composite alloy with a normal composition Fe75.5 Co0.5 Mo0.5 Cu1 Nb1.5 Si13 B8 in atomic percent is reported, which is producible under industrial conditions, and which shows an exceptionally high permeability at high frequencies up to 36 000 at 100 kHz, an increase of 44% compared with commercial FeSiBCuNb nanocrystalline alloy (25 000 ± 2000 at 100 kHz), outperforming all existing nanocrystalline alloy systems and commercial soft magnetic materials. The alloy is obtained by a unique magnetic-heterogeneous nanocrystallization mechanism in an iron-based amorphous alloy, which is different from the traditional strategy of nanocrystallization by doping nonmagnetic elements (e.g., Cu and Nb). The induced magnetic inhomogeneity by adding Co atoms locally promotes the formation of highly ordered structures acting as the nuclei of nanocrystals, and Mo atoms agglomerate around the interfaces of the nanocrystals, inhibiting nanocrystal growth, resulting in an ultrafine nanocrystalline-amorphous dual-phase structure in the alloy. The exceptional soft magnetic properties are shown to be closely related to the low magnetic anisotropy and the unique spin rotation mechanism under alternating magnetic fields.

3.
ACS Omega ; 8(25): 22876-22886, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37396235

RESUMO

In this study, a new covalently modified energetic graphene oxide (CMGO) was synthesized by introducing the energetic component 4-amino-1,2,4-triazole on GO sheets through valence bond bonding. The morphology and structure of CMGO were studied by scanning electron microscopy, energy-dispersive spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffractometry, and X-ray photoelectron spectroscopy, and the results showed that CMGO was successfully synthesized. Then, CMGO/CuO was prepared by loading nano-CuO onto CMGO sheets using an ultrasonic dispersion method. Furthermore, the catalytic effect of CMGO/CuO on the thermal decomposition of ammonium perchlorate (AP) was investigated using differential scanning calorimetric technique and thermogravimetric analysis. The results revealed that the high decomposition temperature TH and Gibbs free energy ΔG⧧ of the CMGO/CuO/AP composite decreased by 93.9 °C and 15.3 kJ/mol compared with those of raw AP, respectively. The CMGO/CuO composite exhibited more significant catalytic effect on the thermal decomposition of AP than GO/CuO, and the heat release Q of CMGO/CuO/AP was greatly increased from 132.9 to 1428.5 J/g with 5 wt % CMGO/CuO. The above results demonstrated that CMGO/CuO is an excellent composite energetic combustion catalyst, which is expected to be widely used in composite propellants.

4.
Sci Adv ; 8(33): eabn3623, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35977009

RESUMO

Glasses have markedly different stability around their glass transition temperature (Tg), and metallic glasses (MGs) are conventionally regarded as metastable compared to other glasses such as silicate glass or amber. Here, we show an aging experiment on a Ce-based MG around its Tg (~0.85Tg) for more than 17 years. We find that the MG with strong fragility could transform into kinetic and thermodynamic hyperstable state after the long-term room temperature aging and exhibits strong resistance against crystallization. The achieved hyperstable state is closer to the ideal glass state compared with that of other MGs and similar to that of the million-year-aged amber, which is attributed to its strong fragility and strong resistance against nucleation. It is also observed through the asymmetrical approaching experiment that the hyperaged Ce-based MG can reach equilibrium liquid state below Tg without crystallization, which supports the idea that nucleation only occurs after the completion of enthalpy relaxation.

5.
Sci Adv ; 8(31): eabm7658, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35921409

RESUMO

Metallic Mimosa pudica, a three-dimensional (3D) biomimetic structure made of metallic glass, is formed via laser patterning: Blooming, closing, and reversing of the metallic M. pudica can be controlled by an applied magnetic field or by manual reshaping. An array of laser-crystallized lines is written in a metallic glass ribbon. Changes in density and/or elastic modulus due to laser patterning result in an appropriate size mismatch between the shrunken crystalline regions and the glassy matrix. The residual stress and elastic distortion energy make the composite material to buckle within the elastic limit and to obey the minimum elastic energy criterion. This work not only provides a programming route for constructing buckling structures of metallic glasses but also provides clues for the study of materials with automatic functions desired in robotics, electronic devices, and, especially, medical devices in the field of medicine, such as vessel scaffolds and vascular filters, which require contactless expansion and contraction functions.

6.
ACS Appl Mater Interfaces ; 13(22): 26256-26263, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34028249

RESUMO

Multilayer graphene has been employed as a functional material for tuning the emissivity in mid- and long-infrared range, which shows great potential for various applications, such as radiative cooling and thermal camouflage. However, the stability of the multilayer graphene is not sufficient for practical applications yet. Even though it is reported that the integrity of the multilayer graphene is compromised by ion intercalation, the detailed mechanism is rather unclear. Here, a set of ionic liquids is deployed as sources of electronic charges for tuning the emissivity of multilayer graphene. It is found that the emissivity modulator using 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([EMIm]NTf2) as the ionic liquid provides a modulation depth of about 0.52 (i.e., about 21% larger than the best-reported value) while maintaining a reasonable device lifetime. The microscopic structures of the multilayer graphene in an operational and failure modulator are investigated by scanning electron microscopy, Raman spectroscopy, X-ray diffraction. The results indicate that the modulation depth of emissivity is negatively correlated with the initial voltage, which represents the reaction potential between the ionic liquid and graphene. Furthermore, not only the chemical reactivity but also the size of both anion and cation in the ionic liquids play important roles in maintaining stability of the modulator. Therefore, a set of criteria (e.g., low initial voltage and small size of anion and cation) is proposed to select proper ionic liquids for emissivity modulation. This not only sheds light on the underlying physics of the modulator but also promotes its practical applications.

7.
Nat Commun ; 6: 7696, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26165855

RESUMO

Liquid-liquid transition, a phase transition of one liquid phase to another with the same composition, provides a key opportunity for investigating the relationship between liquid structures and dynamics. Here we report experimental evidences of a liquid-liquid transition in glass-forming La50Al35Ni15 melt above its liquidus temperature by (27)Al nuclear magnetic resonance including the temperature dependence of cage volume fluctuations and atomic diffusion. The observed dependence of the incubation time on the degree of undercooling is consistent with a first-order phase transition. Simulation results indicate that such transition is accompanied by the change of bond-orientational order without noticeable change in density. The temperature dependence of atomic diffusion revealed by simulations is also in agreement with experiments. These observations indicate the need of two-order parameters in describing phase transitions of liquids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...