Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Braz J Microbiol ; 54(4): 2689-2703, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37661213

RESUMO

Extracellular proteases from halophilic archaea displays increased enzymatic activities in hypersaline environment. In this study, an extracellular protease-coding gene, hly34, from the haloarchaeal strain Halococcus salifodinae PRR34, was obtained through homologous search. The protease activity produced by this strain at 20% NaCl, 42 °C, and pH 7.0 was 32.5 ± 0.5 (U·mL-1). The codon-optimized hly34 which is specific for Escherichia coli can be expressed in E. coli instead of native hly34. It exhibits proteolytic activity under a wide range of low- or high-salt concentrations, slightly acidic or alkaline conditions, and slightly higher temperatures. The Hly34 presented the highest proteolytic activity at 50 °C, pH 9.0, and 0-1 M NaCl. It was found that the Hly34 showed a higher enzyme activity under low-salt conditions. Hly34 has good stability at different NaCl concentrations (1-4 M) and pH (6.0-10.0), as well as good tolerance to some metal ions. However, at 60 °C, the stability is reduced. It has a good tolerance to some metal ions. The proteolytic activity was completely inhibited by phenylmethanesulfonyl fluoride, suggesting that the Hly34 is a serine protease. This study further deepens our understanding of haloarchaeal extracellular protease, most of which found in halophilic archaea are classified as serine proteases. These proteases exhibit a certain level of alkaline resistance and moderate heat resistance, and they may emerge with higher activity under low-salt conditions than high-salt conditions. The protease Hly34 is capable of degrading a number of proteins, including substrate proteins, such as azocasein, whey protein and casein. It has promising applications in industrial production.


Assuntos
Halococcus , Halococcus/genética , Halococcus/metabolismo , Cloreto de Sódio/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Serina Proteases , Serina Endopeptidases , Metais , Íons , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA