Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38869555

RESUMO

The objective of this study is to create a planar solar light absorber that exhibits exceptional absorption characteristics spanning from visible light to infrared across an ultra-wide spectral range. The eight layered structures of the absorber, from top to bottom, consisted of Al2O3, Ti, Al2O3, Ti, Al2O3, Ni, Al2O3, and Al. The COMSOL Multiphysics® simulation software (version 6.0) was utilized to construct the absorber model and perform simulation analyses. The first significant finding of this study is that as compared to absorbers featuring seven-layered structures (excluding the top Al2O3 layer) or using TiO2 or SiO2 layers as substituted for Al2O3 layer, the presence of the top Al2O3 layer demonstrated superior anti-reflection properties. Another noteworthy finding was that the top Al2O3 layer provided better impedance matching compared to scenarios where it was absent or replaced with TiO2 or SiO2 layers, enhancing the absorber's overall efficiency. Consequently, across the ultra-wideband spectrum spanning 350 to 1970 nm, the average absorptivity reached an impressive 96.76%. One significant novelty of this study was the utilization of various top-layer materials to assess the absorption and reflection spectra, along with the optical-impedance-matching properties of the designed absorber. Another notable contribution was the successful implementation of evaporation techniques for depositing and manufacturing this optimized absorber. A further innovation involved the use of transmission electron microscopy to observe the thickness of each deposition layer. Subsequently, the simulated and calculated absorption spectra of solar energy across the AM1.5 spectrum for both the designed and fabricated absorbers were compared, demonstrating a match between the measured and simulated results.

2.
Materials (Basel) ; 16(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37959495

RESUMO

In this study, a fractal absorber was designed to enhance light absorptivity and improve the efficiency of converting solar energy into electricity for a range of solar energy technologies. The absorber consisted of multiple layers arranged from bottom to top, and the bottom layer was made of Ti metal, followed by a thin layer of MgF2 atop it. Above the two layers, a structure comprising square pillars formed by three layers of Ti/MgF2/Ti was formed. This pillar was encompassed by a square hollow with cylindrical structures made of Ti material on the exterior. The software utilized for this study was COMSOL Multiphysics® (version 6.0). This study contains an absorption spectrum analysis of the various components of the designed absorber system, confirming the notion that achieving ultra-wideband and perfect absorption resulted from the combination of the various components. A comprehensive analysis was also conducted on the width of the central square pillar, and the analysis results demonstrate the presence of several remarkable optical phenomena within the investigated structure, including propagating surface plasmon resonance, localized surface plasmon resonance, Fabry-Perot cavity resonance, and symmetric coupling plasma modes. The optimal model determined through this software demonstrated that broadband absorption in the range of 276 to 2668 nm, which was in the range of UV-B to near-infrared, exceeded 90.0%. The average absorption rate in the range of 276~2668 nm reached 0.965, with the highest achieving a perfect absorptivity of 99.9%. A comparison between absorption with and without outer cylindrical structures revealed that the resonance effects significantly enhanced absorption efficiency, as evidenced by a comparison of electric field distributions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...