Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36015620

RESUMO

The optimization of multicomponent emissive layer (EML) deposition by slot-die coating for organic light-emitting diodes (OLEDs) is presented. In the investigated EMLs, the yellow-green iridium complex (Ir) was doped in two types of host: a commonly used mixture of poly(N-vinylcarbazole) (PVK) with oxadiazole derivative (PBD) or PVK with thermally activated delayed fluorescence-assisted dopant (10-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-10H-spiro[acridine-9,9'-fluorene], SpiroAC-TRZ). In this article, OLEDs with EML prepared in air by slot-die coating, facilitating industrial manufacturing, are confronted with those with spin-coated EML in nitrogen. OLEDs based on PVK:PBD + 2 wt.% Ir-dopant exhibit comparable performance: ~13 cd A-1, regardless of the used method. The highest current efficiency (21 cd A-1) is shown by OLEDs based on spin-coated PVK with 25 wt.% SpiroAC-TRZ and 2 wt.% Ir-dopant. It is three times higher than the efficiency of OLEDs with slot-die-coated EML in air. The performance reduction, connected with the adverse oxygen effect on the energy transfer from TADF to emitter molecules, is minimized by the rapid EML annealing in a nitrogen atmosphere. This post-treatment causes more than a doubling of the OLED efficiency, from 7 cd A-1 to over 15 cd A-1. Such an approach may be easily implemented in other printing techniques and result in a yield enhancement.

2.
Adv Mater ; 34(29): e2201409, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35581173

RESUMO

Device optimization of light-emitting diodes (LEDs) targets the most efficient conversion of electrically injected charges into emitted light. The emission zone in an LED is where charges recombine and light is emitted from. It is believed that the emission zone is strongly linked to device efficiency and lifetime. However, the emission zone size is below the optical diffraction limit, so it is difficult to measure. An accessible method based on a single emission spectrum that enables emission zone measurements with sub-second time resolution is shown. A procedure is introduced to study and control the emission zone of an LED system and correlate it with device performance. A thermally activated delayed fluorescence organic LED emission zone is experimentally measured over all luminescing current densities, while varying the device structure and while ageing. The emission zone is shown to be finely controlled by emitter doping because electron transport via the emitter is the charge-transport bottleneck of the system. Suspected quenching/degradation mechanisms are linked with the emission zone changes, device structure variation, and ageing. Using these findings, a device with an ultralong 4500 h T95 lifetime at 1000 cd m-2 with 20% external quantum efficiency is shown.

3.
Polymers (Basel) ; 13(7)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918499

RESUMO

Many methods have been proposed to increase the efficiency of organic electroluminescent materials applied as an emissive layer in organic light emitting diodes (OLEDs). Herein, we demonstrate enhancement of electroluminescence efficiency and operational stability solution processed OLEDs by employing thermally activated delayed fluorescence (TADF) molecules as assistant dopants in host-guest systems. The TADF assistant dopant (SpiroAC-TRZ) is used to facilitate efficient energy transfer from host material poly(N-vinylcarbazole) (PVK) to a phosphorescent Ir(III) emitter. We present the analysis of energy transfer and charge trapping-two main processes playing a crucial role in light generation in host-guest structure OLEDs. The investigation of photo-, electro- and thermoluminescence for the double-dopant layer revealed that assistant dopant does not only harvest and transfer the electrically generated excitons to phosphorescent emitter molecules but also creates exciplexes. The triplet states of formed PVK:SpiroAC-TRZ exciplexes are involved in the transport process of charge carriers and promote long-range exciton energy transfer to the emitter, improving the efficiency of electroluminescence in a single emissive layer OLED, resulting in devices with luminance exceeding 18 000 cd/m2 with a luminous efficiency of 23 cd/A and external quantum efficiency (EQE) of 7.4%.

4.
Adv Mater ; 28(1): 151-5, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26542747

RESUMO

Transistor parameter extraction by the conventional transconductance method can lead to a mobility overestimate. Organic transistors undergoing major contact resistance experience a significant drop in mobility upon mild annealing. Before annealing, strong field-dependent contact resistance yields nonlinear transfer curves with locally high transconductances, resulting in a mobility overestimate. After annealing, a contact resistance below 200 Ω cm is achieved, which is stable over a wide V(G) range.

5.
Sci Rep ; 4: 7398, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25492120

RESUMO

The Internet of Things is driving extensive efforts to develop intelligent everyday objects. This requires seamless integration of relatively simple electronics, for example through 'stick-on' electronics labels. We believe the future evolution of this technology will be governed by Wright's Law, which was first proposed in 1936 and states that the cost of a product decreases with cumulative production. This implies that a generic electronic device that can be tailored for application-specific requirements during downstream integration would be a cornerstone in the development of the Internet of Things. We present an 8-bit thin-film microprocessor with a write-once, read-many (WORM) instruction generator that can be programmed after manufacture via inkjet printing. The processor combines organic p-type and soluble oxide n-type thin-film transistors in a new flavor of the familiar complementary transistor technology with the potential to be manufactured on a very thin polyimide film, enabling low-cost flexible electronics. It operates at 6.5 V and reaches clock frequencies up to 2.1 kHz. An instruction set of 16 code lines, each line providing a 9 bit instruction, is defined by means of inkjet printing of conductive silver inks.

6.
ACS Appl Mater Interfaces ; 1(3): 567-74, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20355977

RESUMO

Carbazole-based materials adopting the nonconjugated substitution of triphenylsilyl (-SiPh(3)) and trityl (-CPh(3)) side groups are studied as high-triplet-energy, morphologically, and electrochemically stable host materials with tunable carrier-transport properties for organic blue electrophosphorescence. The developed host materials 9-(4-tert-butylphenyl)-3,6-bis(triphenylsilyl)-9H-carbazole (CzSi), 9-(4-tert-butylphenyl)-3,6-ditrityl-9H-carbazole (CzC), and 9-(4-tert-butylphenyl)-3-(triphenylsilyl)-6-trityl-9H-carbazole (CzCSi) all show high triplet energies of 2.97-3.02 eV, along with high glass transition temperatures of 131-163 degrees C and superior electrochemical stability. Nevertheless, the carrier-transport properties show rather significant dependence on different substitutions. Although three different host materials give similar peak electroluminescence efficiencies at low driving currents, the CzSi host, which has more suitable carrier-transport properties, renders broadened distributions of the triplet excitons in phosphorescent devices, reducing the quenching associated with triplet-triplet annihilation and giving larger resistance against efficiency roll-off at higher brightnesses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...