Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36077586

RESUMO

Mikania micrantha, recognized as one of the world's top 10 pernicious weeds, is a rapidly spreading tropical vine that has invaded the coastal areas of South China, causing serious economic losses and environmental damage. Rapid stem growth is an important feature of M. micrantha which may be related to its greater number of genes involved in auxin signaling and transport pathways and its ability to synthesize more auxin under adverse conditions to promote or maintain stem growth. Plant growth and development is closely connected to the regulation of endogenous hormones, especially the polar transport and asymmetric distribution of auxin. The PIN-FORMED (PIN) auxin efflux carrier gene family plays a key role in the polar transport of auxin and then regulates the growth of different plant tissues, which could indicate that the rapid growth of M. micrantha is closely related to this PIN-dependent auxin regulation. In this study, 11 PIN genes were identified and the phylogenetic relationship and structural compositions of the gene family in M. micrantha were analyzed by employing multiple bioinformatic methods. The phylogenetic analysis indicated that the PIN proteins could be divided into five distinct clades. The structural analysis revealed that three putative types of PIN (canonical, noncanonical and semi-canonical) exist among the proteins according to the length and the composition of the hydrophilic domain. The majority of the PINs were involved in the process of axillary bud differentiation and stem response under abiotic stress, indicating that M. micrantha may regulate its growth, development and stress response by regulating PIN expression in the axillary bud and stem, which may help explain its strong growth ability and environmental adaptability. Our study emphasized the structural features and stress response patterns of the PIN gene family and provided useful insights for further study into the molecular mechanism of auxin-regulated growth and control in M. micrantha.


Assuntos
Mikania , Ácidos Indolacéticos/metabolismo , Mikania/genética , Mikania/metabolismo , Filogenia , Desenvolvimento Vegetal , Plantas Daninhas/metabolismo
2.
Int J Mol Sci ; 22(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34681947

RESUMO

Sphagneticola trilobata is an invasive plant in South China. A hybrid between S. trilobata and Sphagneticola calendulacea (a native related species) has also been found in South China. The drought resistance of S. calendulacea, S. trilobata and their hybrid was studied in this paper. Under drought stress, the leaves of S. trilobata synthesized more abscisic acid (ABA) than those of the other species to reduce stomatal opening and water loss. The activities of antioxidant enzymes were the highest in S. trilobata and the lowest in S. calendulacea. The leaves of S. calendulacea suffered the most serious damage, and their maximum photochemical efficiency was the lowest. RNA-sequencing ware used to analyze the expression levels of genes in ABA, antioxidant enzyme, sugar and proline synthesis and photosynthesis pathways. Further real-time PCR detection verified the RNA-sequence results, and the results were in accordance with the physiological data. The results showed that S. trilobata was the most drought tolerant, and the drought tolerance of the hybrid did not show heterosis but was higher than S. calendulacea. Therefore, compared with S. trilobata and the hybrid, the population number and distribution of S. calendulacea may be less in arid areas.


Assuntos
Asteraceae/fisiologia , Secas , Regulação da Expressão Gênica de Plantas , Fotossíntese , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Asteraceae/classificação , Proteínas de Plantas/genética , RNA-Seq
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...