Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 153(3): 672-683.e6, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37931708

RESUMO

BACKGROUND: Patients with severe asthma can present with eosinophilic type 2 (T2), neutrophilic, or mixed inflammation that drives airway remodeling and exacerbations and represents a major treatment challenge. The common ß (ßc) receptor signals for 3 cytokines, GM-CSF, IL-5, and IL-3, which collectively mediate T2 and neutrophilic inflammation. OBJECTIVE: To determine the pathogenesis of ßc receptor-mediated inflammation and remodeling in severe asthma and to investigate ßc antagonism as a therapeutic strategy for mixed granulocytic airway disease. METHODS: ßc gene expression was analyzed in bronchial biopsy specimens from patients with mild-to-moderate and severe asthma. House dust mite extract and Aspergillus fumigatus extract (ASP) models were used to establish asthma-like pathology and airway remodeling in human ßc transgenic mice. Lung tissue gene expression was analyzed by RNA sequencing. The mAb CSL311 targeting the shared cytokine binding site of ßc was used to block ßc signaling. RESULTS: ßc gene expression was increased in patients with severe asthma. CSL311 potently reduced lung neutrophils, eosinophils, and interstitial macrophages and improved airway pathology and lung function in the acute steroid-resistant house dust mite extract model. Chronic intranasal ASP exposure induced airway inflammation and fibrosis and impaired lung function that was inhibited by CSL311. CSL311 normalized the ASP-induced fibrosis-associated extracellular matrix gene expression network and strongly reduced signatures of cellular inflammation in the lung. CONCLUSIONS: ßc cytokines drive steroid-resistant mixed myeloid cell airway inflammation and fibrosis. The anti-ßc antibody CSL311 effectively inhibits mixed T2/neutrophilic inflammation and severe asthma-like pathology and reverses fibrosis gene signatures induced by exposure to commonly encountered environmental allergens.


Assuntos
Asma , Receptores de Citocinas , Camundongos , Animais , Humanos , Receptores de Citocinas/metabolismo , Remodelação das Vias Aéreas , Pulmão , Citocinas/metabolismo , Camundongos Transgênicos , Inflamação , Alérgenos , Esteroides/uso terapêutico , Fibrose , Pyroglyphidae
2.
Nat Commun ; 14(1): 2697, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188662

RESUMO

Spatial proteomics technologies have revealed an underappreciated link between the location of cells in tissue microenvironments and the underlying biology and clinical features, but there is significant lag in the development of downstream analysis methods and benchmarking tools. Here we present SPIAT (spatial image analysis of tissues), a spatial-platform agnostic toolkit with a suite of spatial analysis algorithms, and spaSim (spatial simulator), a simulator of tissue spatial data. SPIAT includes multiple colocalization, neighborhood and spatial heterogeneity metrics to characterize the spatial patterns of cells. Ten spatial metrics of SPIAT are benchmarked using simulated data generated with spaSim. We show how SPIAT can uncover cancer immune subtypes correlated with prognosis in cancer and characterize cell dysfunction in diabetes. Our results suggest SPIAT and spaSim as useful tools for quantifying spatial patterns, identifying and validating correlates of clinical outcomes and supporting method development.


Assuntos
Neoplasias , Humanos , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Proteômica , Microambiente Tumoral
3.
Haematologica ; 108(1): 83-97, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35770527

RESUMO

Patients with refractory relapsed multiple myeloma respond to combination treatment with elotuzumab and lenalidomide. The mechanisms underlying this observation are not fully understood. Furthermore, biomarkers predictive of response have not been identified to date. To address these issues, we used a humanized myeloma mouse model and adoptive transfer of human natural killer (NK) cells to show that elotuzumab and lenalidomide treatment controlled myeloma growth, and this was mediated through CD16 on NK cells. In co-culture studies, we showed that peripheral blood mononuclear cells from a subset of patients with refractory relapsed multiple myeloma were effective killers of OPM2 myeloma cells when treated with elotuzumab and lenalidomide, and this was associated with significantly increased expression of CD54 on OPM2 cells. Furthermore, elotuzumab- and lenalidomide-induced OPM2 cell killing and increased OPM2 CD54 expression were dependent on both monocytes and NK cells, and these effects were not mediated by soluble factors alone. At the transcript level, elotuzumab and lenalidomide treatment significantly increased OPM2 myeloma cell expression of genes for trafficking and adhesion molecules, NK cell activation ligands and antigen presentation molecules. In conclusion, our findings suggest that multiple myeloma patients require elotuzumab- and lenalidomide-mediated upregulation of CD54 on autologous myeloma cells, in combination with NK cells and monocytes to mediate an effective anti-tumor response. Furthermore, our data suggest that increased myeloma cell CD54 expression levels could be a powerful predictive biomarker for response to elotuzumab and lenalidomide treatment.


Assuntos
Mieloma Múltiplo , Animais , Camundongos , Humanos , Lenalidomida/farmacologia , Lenalidomida/uso terapêutico , Lenalidomida/metabolismo , Mieloma Múltiplo/metabolismo , Monócitos/metabolismo , Leucócitos Mononucleares/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Células Matadoras Naturais , Dexametasona/uso terapêutico
4.
Cell Death Dis ; 13(9): 777, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36075907

RESUMO

Understanding prostate cancer onset and progression in order to rationally treat this disease has been critically limited by a dire lack of relevant pre-clinical animal models. We have generated a set of genetically engineered mice that mimic human prostate cancer, initiated from the gland epithelia. We chose driver gene mutations that are specifically relevant to cancers of young men, where aggressive disease poses accentuated survival risks. An outstanding advantage of our models are their intact repertoires of immune cells. These mice provide invaluable insight into the importance of immune responses in prostate cancer and offer scope for studying treatments, including immunotherapies. Our prostate cancer models strongly support the role of tumour suppressor p53 in functioning to critically restrain the emergence of cancer pathways that drive cell cycle progression; alter metabolism and vasculature to fuel tumour growth; and mediate epithelial to mesenchymal-transition, as vital to invasion. Importantly, we also discovered that the type of p53 alteration dictates the specific immune cell profiles most significantly disrupted, in a temporal manner, with ramifications for disease progression. These new orthotopic mouse models demonstrate that each of the isogenic hotspot p53 amino acid mutations studied (R172H and R245W, the mouse equivalents of human R175H and R248W respectively), drive unique cellular changes affecting pathways of proliferation and immunity. Our findings support the hypothesis that individual p53 mutations confer their own particular oncogenic gain of function in prostate cancer.


Assuntos
Neoplasias da Próstata , Proteína Supressora de Tumor p53 , Animais , Carcinogênese/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
5.
Cancers (Basel) ; 14(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36010941

RESUMO

Metastatic prostate cancer is a lethal disease in patients incapable of responding to therapeutic interventions. Invasive prostate cancer spread is caused by failure of the normal anti-cancer defense systems that are controlled by the tumour suppressor protein, p53. Upon mutation, p53 malfunctions. Therapeutic strategies to directly re-empower the growth-restrictive capacities of p53 in cancers have largely been unsuccessful, frequently because of a failure to discriminate responses in diseased and healthy tissues. Our studies sought alternative prostate cancer drivers, intending to uncover new treatment targets. We discovered the oncogenic potency of MDM4 in prostate cancer cells, both in the presence and absence of p53 and also its mutation. We uncovered that sustained depletion of MDM4 is growth inhibitory in prostate cancer cells, involving either apoptosis or senescence, depending on the cell and genetic context. We identified that the potency of MDM4 targeting could be potentiated in prostate cancers with mutant p53 through the addition of a first-in-class small molecule drug that was selected as a p53 reactivator and has the capacity to elevate oxidative stress in cancer cells to drive their death.

6.
J Immunother Cancer ; 10(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35764368

RESUMO

BACKGROUND: Aberrations in homologous recombination repair (HRR) genes are emerging as important biomarkers for personalized treatment in prostate cancer (PCa). HRR deficiency (HRD) could affect the tumor immune microenvironment (TIME), potentially contributing to differential responses to poly ADP-ribose polymerase (PARP) inhibitors and immune checkpoint inhibitors. Spatial distribution of immune cells in a range of cancers identifies novel disease subtypes and is related to prognosis. In this study we aimed to determine the differences in the TIME of PCa with and without germline (g) HRR mutations. METHODS: We performed gene expression analysis, multiplex immunohistochemistry of T and B cells and quantitative spatial analysis of PCa samples from 36 patients with gHRD and 26 patients with sporadic PCa. Samples were archival tumor tissue from radical prostatectomies with the exception of one biopsy. Results were validated in several independent cohorts. RESULTS: Although the composition of the T cell and B cells was similar in the tumor areas of gHRD-mutated and sporadic tumors, the spatial profiles differed between these cohorts. We describe two T-cell spatial profiles across primary PCa, a clustered immune spatial (CIS) profile characterized by dense clusters of CD4+ T cells closely interacting with PD-L1+ cells, and a free immune spatial (FIS) profile of CD8+ cells in close proximity to tumor cells. gHRD tumors had a more T-cell inflamed microenvironment than sporadic tumors. The CIS profile was mainly observed in sporadic tumors, whereas a FIS profile was enriched in gHRD tumors. A FIS profile was associated with lower Gleason scores, smaller tumors and longer time to biochemical recurrence and metastasis. CONCLUSIONS: gHRD-mutated tumors have a distinct immune microenvironment compared with sporadic tumors. Spatial profiling of T-cells provides additional information beyond T-cell density and is associated with time to biochemical recurrence, time to metastasis, tumor size and Gleason scores.


Assuntos
Mutação em Linhagem Germinativa , Neoplasias da Próstata , Humanos , Inibidores de Checkpoint Imunológico , Masculino , Neoplasias da Próstata/genética , Reparo de DNA por Recombinação , Microambiente Tumoral/genética
7.
J Immunother Cancer ; 10(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35550554

RESUMO

BACKGROUND: Vaginal melanoma (VM) is a rare cancer and has a poor response to immune checkpoint blockade (ICB). CD8+Tissue Resident Memory (TRM) T cells proliferate in response to ICB and correlate with longer survival in metastatic cutaneous melanoma. However, their capacity to respond to VM and their neoantigens is not known. METHODS: Using longitudinal samples, we explored the evolution of VM mutations by whole-exome sequencing and RNAseq, we also defined the immune context using multiplex immunohistochemistry and nanostring pan cancer immune profile. Then using fresh single cell suspensions of the metastatic samples, we explored VM T cells via mass cytometry and single cell RNAseq and T cell receptor sequencing (TCRseq). Finally, we investigated TRM, pre-TRM and exhausted T cell function against melanoma neo-antigens and melanoma differentiation antigens in vitro. RESULTS: Primary VM was non-inflamed and devoid of CD8+ TRM cells. In contrast, both metastases showed proliferating CD8+ TRM were clustered at the tumor margin, with increased numbers in the second ICB-refractory metastasis. The first metastasis showed dense infiltration of CD8+ T cells, the second showed immune exclusion with loss of melanoma cell Major histocompatibility complex (MHC)-I expression associated with downregulation of antigen presentation pathway gene expression. CD8+ TRM from both metastases responded to autologous melanoma cells more robustly than all other CD8+ T cell subsets. In addition, CD8+ TRM shared TCR clones across metastases, suggesting a response to common antigens, which was supported by recognition of the same neoantigen by expanded tumor infiltrating lymphocytes. CONCLUSIONS: In this study, we identified TRM clusters in VM metastases from a patient, but not primary disease. We showed TRM location at the tumor margin, and their superior functional response to autologous tumor cells, predicted neoantigens and melanoma differentiation antigens. These CD8+ TRM exhibited the highest tumor-responsive potential and shared their TCR with tumor-infiltrating effector memory T cells. This suggests VM metastases from this patient retain strong antitumor T cell functional responses; however, this response is suppressed in vivo. The loss of VG MHC-I expression is a common immune escape mechanism which was not addressed by anti-PD-1 monotherapy; rather an additional targeted approach to upregulate MHC-I expression is required.


Assuntos
Melanoma , Neoplasias Cutâneas , Linfócitos T CD8-Positivos , Feminino , Humanos , Inibidores de Checkpoint Imunológico , Memória Imunológica , Células T de Memória , Neoplasias Cutâneas/metabolismo
8.
Nat Commun ; 12(1): 4746, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362900

RESUMO

The function of MR1-restricted mucosal-associated invariant T (MAIT) cells in tumor immunity is unclear. Here we show that MAIT cell-deficient mice have enhanced NK cell-dependent control of metastatic B16F10 tumor growth relative to control mice. Analyses of this interplay in human tumor samples reveal that high expression of a MAIT cell gene signature negatively impacts the prognostic significance of NK cells. Paradoxically, pre-pulsing tumors with MAIT cell antigens, or activating MAIT cells in vivo, enhances anti-tumor immunity in B16F10 and E0771 mouse tumor models, including in the context of established metastasis. These effects are associated with enhanced NK cell responses and increased expression of both IFN-γ-dependent and inflammatory genes in NK cells. Importantly, activated human MAIT cells also promote the function of NK cells isolated from patient tumor samples. Our results thus describe an activation-dependent, MAIT cell-mediated regulation of NK cells, and suggest a potential therapeutic avenue for cancer treatment.


Assuntos
Imunidade Celular , Células Matadoras Naturais/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Neoplasias/imunologia , Animais , Antineoplásicos , Linhagem Celular Tumoral , Citocinas , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Imunidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antígenos de Histocompatibilidade Menor/genética , Metástase Neoplásica , Neoplasias/patologia
9.
BMC Cancer ; 21(1): 846, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294073

RESUMO

BACKGROUND: Prostate cancer is caused by genomic aberrations in normal epithelial cells, however clinical translation of findings from analyses of cancer cells alone has been very limited. A deeper understanding of the tumour microenvironment is needed to identify the key drivers of disease progression and reveal novel therapeutic opportunities. RESULTS: In this study, the experimental enrichment of selected cell-types, the development of a Bayesian inference model for continuous differential transcript abundance, and multiplex immunohistochemistry permitted us to define the transcriptional landscape of the prostate cancer microenvironment along the disease progression axis. An important role of monocytes and macrophages in prostate cancer progression and disease recurrence was uncovered, supported by both transcriptional landscape findings and by differential tissue composition analyses. These findings were corroborated and validated by spatial analyses at the single-cell level using multiplex immunohistochemistry. CONCLUSIONS: This study advances our knowledge concerning the role of monocyte-derived recruitment in primary prostate cancer, and supports their key role in disease progression, patient survival and prostate microenvironment immune modulation.


Assuntos
Perfilação da Expressão Gênica , Monócitos/metabolismo , Monócitos/patologia , Neoplasias da Próstata/genética , Transcriptoma , Microambiente Tumoral/genética , Biologia Computacional/métodos , Progressão da Doença , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imuno-Histoquímica , Imunofenotipagem , Estimativa de Kaplan-Meier , Masculino , Anotação de Sequência Molecular , Prognóstico , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/mortalidade
10.
Int J Radiat Oncol Biol Phys ; 111(2): 502-514, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34023423

RESUMO

PURPOSE: We examined how radiation dose per fraction (DPF) and total dose, as represented by biological effective dose (BED), can independently and differentially affect the immunomodulatory capacity of radiation therapy (RT). METHODS AND MATERIALS: AT3-OVA mammary and MC38 colorectal tumors in C57BL/6 mice were irradiated with rationally selected dose-fractionation schedules, alone or with immune-modulating or -depleting agents. Tumor growth was monitored as a readout of therapeutic response. Flow cytometry and RNA sequencing of mouse tumors and analysis of transcriptomic data sets from irradiated human cancers were used to examine the immunomodulatory effects of the different radiation schedules. RESULTS: In AT3-OVA tumors, radiation DPF rather than BED determined the ability of RT to evoke local antitumor CD8+ T cell responses and synergize with anti-PD-1 therapy. Natural killer cell-mediated control of irradiated tumors was more sensitive to radiation BED. Radiation-induced regulatory T cell (Treg) responses, which were detected in both mouse and human tumors, were a major factor underlying the differential activation of adaptive immunity by radiation DPF and the activity of natural killer cells during the early phase of response to RT. Targeted inhibition of Treg responses within irradiated tumors rescued and enhanced local tumor control by RT and permitted the generation of abscopal and immunologic memory responses, irrespective of radiation schedule. MC38 tumors did not support the induction of an amplified Treg response to RT and were highly vulnerable to its immunoadjuvant effects. CONCLUSIONS: Local radiation-induced Treg responses are influenced by radiation schedule and tumor type and are a critical determinant of the immunoadjuvant potential of RT and its ability to synergize with T cell-targeted immunotherapy.


Assuntos
Fracionamento da Dose de Radiação , Neoplasias Experimentais/radioterapia , Linfócitos T Reguladores/imunologia , Imunidade Adaptativa/efeitos da radiação , Animais , Linfócitos T CD8-Positivos/imunologia , Feminino , Imunidade Inata/efeitos da radiação , Imunomodulação , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/imunologia
12.
Methods Mol Biol ; 2265: 529-541, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33704738

RESUMO

We describe here a protocol to measure gene expression, T cell receptor (TCR) sequence, and protein expression by single T cells extracted from melanoma, using 10× Chromium technology. This method includes freezing and thawing of the melanoma infiltrating lymphocytes, staining of cells with fluorescent and barcode-conjugated antibodies, sorting of T cells, and loading the cells on the 10× Chromium Controller. After sequencing, analysis includes quality control, genetic demultiplexing to resolve genetically different samples, and T cell clonality and clustering analysis. Single cell RNA sequencing paints the complete portrait of individual T cells, including their clonality and phenotype, and it reconstructs a complete picture of the T cell infiltrate in a tumor that is represented as cell clustering similar to a pointillism painting.


Assuntos
Linfócitos do Interstício Tumoral/imunologia , Melanoma , RNA-Seq , Receptores de Antígenos de Linfócitos T , Análise de Célula Única , Humanos , Melanoma/genética , Melanoma/imunologia , Receptores de Antígenos de Linfócitos T/imunologia
13.
Eur Urol Focus ; 7(2): 234-237, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33172774

RESUMO

LuTectomy is an open-label phase 1/2 nonrandomised clinical trial evaluating the dosimetry, efficacy, and toxicity of the lutetium-177-radiolabelled small molecule PSMA-617 in men with high-risk localised/locoregional advanced prostate cancer with high prostate-specific membrane antigen expression who are undergoing radical prostatectomy and pelvic lymph node dissection.


Assuntos
Prostatectomia , Doenças Prostáticas/cirurgia , Dipeptídeos , Compostos Heterocíclicos com 1 Anel , Humanos , Masculino , Antígeno Prostático Específico
14.
BMC Urol ; 20(1): 171, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33115461

RESUMO

BACKGROUND: Understanding the drivers of recurrence in aggressive prostate cancer requires detailed molecular and genomic understanding in order to aid therapeutic interventions. We provide here a case report of histological, transcriptional, proteomic, immunological, and genomic features in a longitudinal study of multiple biopsies from diagnosis, through treatment, and subsequent recurrence. CASE PRESENTATION: Here we present a case study of a male in 70 s with high-grade clinically-localised acinar adenocarcinoma treated with definitive hormone therapy and radiotherapy. The patient progressed rapidly with rising PSA and succumbed without metastasis 52 months after diagnosis. We identified the expression of canonical histological markers of neuroendocrine PC (NEPC) including synaptophysin, neuron-specific enolase and thyroid transcription factor 1, as well as intact AR expression, in the recurrent disease only. The resistant disease was also marked by an extremely low immune infiltrate, extensive genomic chromosomal aberrations, and overactivity in molecular hallmarks of NEPC disease including Aurora kinase and E2F, as well as novel alterations in the cMYB pathway. We also observed that responses to both primary treatments (high dose-rate brachytherapy and androgen deprivation therapies) were consistent with known optimal responses-ruling out treatment inefficacy as a factor in relapse. CONCLUSIONS: These data provide novel insights into a case of locally recurrent aggressive prostate cancer harbouring NEPC pathology, in the absence of detected metastasis.


Assuntos
Neoplasias da Próstata/genética , Idoso , Resistencia a Medicamentos Antineoplásicos , Humanos , Estudos Longitudinais , Masculino , Tumores Neuroendócrinos/genética , Fenótipo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/imunologia , Transcriptoma
15.
Oncoimmunology ; 9(1): 1802979, 2020 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-32939322

RESUMO

The presence of a tumor can alter host immunity systematically. The immune-tumor interaction in one site may impact the local immune microenvironment in distal tissues through the circulation, and therefore influence the efficacy of immunotherapies to distant metastases. Improved understanding of the immune-tumor interactions during immunotherapy treatment in a metastatic setting may enhance the efficacy of current immunotherapies. Here we investigate the response to αPD-1/αCTLA4 and trimAb (αDR5, α4-1BB, αCD40) of 67NR murine breast tumors grown simultaneously in the mammary fat pad (MFP) and lung, a common site of breast cancer metastasis, and compared to tumors grown in isolation. Lung tumors present in isolation were resistant to both therapies. However, in MFP and lung tumor-bearing mice, the presence of a MFP tumor could increase lung tumor response to immunotherapy and decrease the number of lung metastases, leading to complete eradication of lung tumors in a proportion of mice. The MFP tumor influence on lung metastases was mediated by CD8+ T cells, as CD8+ T cell depletion abolished the difference in lung metastases. Furthermore, mice with concomitant MFP and lung tumors had increased tumor specific, effector CD8+ T cells infiltration in the lungs. Thus, we propose a model where tumors in an immunogenic location can give rise to systemic anti-tumor CD8+ T cell responses that could be utilized to target metastatic tumors. These results highlight the requirement for clinical consideration of cross-talk between primary and metastatic tumors for effective immunotherapy for cancers otherwise resistant to immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Pulmonares , Animais , Imunoterapia , Neoplasias Pulmonares/terapia , Depleção Linfocítica , Camundongos , Microambiente Tumoral
16.
Cancers (Basel) ; 12(6)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545367

RESUMO

Lung cancer poses the greatest cancer-related death risk and males have poorer outcomes than females, for unknown reasons. Patient sex is not a biological variable considered in lung cancer standard of care. Correlating patient genetics with outcomes is predicted to open avenues for improved management. Using a bioinformatics approach across non-small cell lung cancer (NSCLC) subtypes, we identified where patient sex, mutation of the major tumor suppressor gene, Tumour protein P53 (TP53), and immune signatures stratified outcomes in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), among datasets of The Cancer Genome Atlas (TCGA). We exposed sex and TP53 gene mutations as prognostic for LUAD survival. Longest survival in LUAD occurred among females with wild-type (wt) TP53 genes, high levels of immune infiltration and enrichment for pathway signatures of Interferon Gamma (INF-γ), Tumour Necrosis Factor (TNF) and macrophages-monocytes. In contrast, poor survival in men with LUAD and wt TP53 genes corresponded with enrichment of Transforming Growth Factor Beta 1 (TGFB1, hereafter TGF-ß) and wound healing signatures. In LUAD with wt TP53 genes, elevated gene expression of immune checkpoint CD274 (hereafter: PD-L1) and also protein 53 (p53) negative-regulators of the Mouse Double Minute (MDM)-family predict novel avenues for combined immunotherapies. LUSC is dominated by male smokers with TP53 gene mutations, while a minor population of TCGA LC patients with wt TP53 genes unexpectedly had the poorest survival, suggestive of a separate etiology. We conclude that advanced approaches to LUAD and LUSC therapy lie in the consideration of patient sex, TP53 gene mutation status and immune signatures.

17.
J Immunother Cancer ; 8(1)2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32581061

RESUMO

BACKGROUND: Prostate cancer (PCa) has a profoundly immunosuppressive microenvironment and is commonly immune excluded with few infiltrative lymphocytes and low levels of immune activation. High-dose radiation has been demonstrated to stimulate the immune system in various human solid tumors. We hypothesized that localized radiation therapy, in the form of high dose-rate brachytherapy (HDRBT), would overcome immune suppression in PCa. METHODS: To investigate whether HDRBT altered prostate immune context, we analyzed preradiation versus postradiation human tissue from a cohort of 24 patients with localized PCa that received HDRBT as primary treatment (RadBank cohort). We performed Nanostring immune gene expression profiling, digital spatial profiling, and high-throughput immune cell multiplex immunohistochemistry analysis. We also resolved tumor and nontumor zones in spatial and bioinformatic analyses to explore the immunological response. RESULTS: Nanostring immune profiling revealed numerous immune checkpoint molecules (eg, B7-H3, CTLA4, PDL1, and PDL2) and TGFß levels were increased in response to HDRBT. We used a published 16-gene tumor inflammation signature (TIS) to divide tumors into distinct immune activation states (high:hot, intermediate and low:cold) and showed that most localized PCa are cold tumors pre-HDRBT. Crucially, HDRBT converted 80% of these 'cold'-phenotype tumors into an 'intermediate' or 'hot' class. We used digital spatial profiling to show these HDRBT-induced changes in prostate TIS scores were derived from the nontumor regions. Furthermore, these changes in TIS were also associated with pervasive changes in immune cell density and spatial relationships-in particular, between T cell subsets and antigen presenting cells. We identified an increased density of CD4+ FOXP3+ T cells, CD68+ macrophages and CD68+ CD11c+ dendritic cells in response to HDRBT. The only subset change specific to tumor zones was PDL1- macrophages. While these immune responses were heterogeneous, HDRBT induced significant changes in immune cell associations, including a gained T cell and HMWCK+ PDL1+ interaction in tumor zones. CONCLUSION: In conclusion, we showed HDRBT converted "cold" prostate tumors into more immunologically activated "hot" tissues, with accompanying spatially organized immune infiltrates and signaling changes. Understanding and potentially harnessing these changes will have widespread implications for the future treatment of localized PCa, including rational use of combination radio-immunotherapy.


Assuntos
Biomarcadores/análise , Braquiterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/radioterapia , Linfócitos T/imunologia , Microambiente Tumoral/imunologia , Idoso , Humanos , Linfócitos do Interstício Tumoral/efeitos da radiação , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Linfócitos T/efeitos da radiação , Microambiente Tumoral/efeitos da radiação
18.
J Invest Dermatol ; 140(4): 869-877.e16, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31580843

RESUMO

Lentigo maligna (LM) is a common subtype of in situ melanoma on chronically sun-exposed skin, particularly the head and neck of older patients. Although surgery is the standard treatment, there is associated morbidity, and options such as imiquimod cream or radiotherapy may be used if surgery is refused or inappropriate. Complete response rates following imiquimod treatment are variable in the literature. The aim of this study was to evaluate the host immune response both before and following treatment with imiquimod to better identify likely responders. Paired pre- and post-imiquimod treatment specimens were available for 27 patients. Patients were treated with imiquimod 5 days per week for 12 weeks; at 16 weeks, lesions were excised for histological assessment. Of the 27 patients, 16 were responders and 11 failed to clear the disease. PDL1 protein expression was increased, accompanied by a unique gene signature in lesions from patients that subsequently histologically cleared LM by 16 weeks. This comprised 57 upregulated immune genes in signaling networks for antigen presentation, type I interferon signaling, and T-cell activation. This may represent an early responder group to imiquimod, and this unique gene signature potentially can be used as a biomarker of LM response to imiquimod.


Assuntos
Antígeno B7-H1/genética , Regulação Neoplásica da Expressão Gênica , Sarda Melanótica de Hutchinson/tratamento farmacológico , Imiquimode/administração & dosagem , Imunidade Celular/efeitos dos fármacos , Neoplasias Cutâneas/tratamento farmacológico , Adjuvantes Imunológicos/administração & dosagem , Administração Tópica , Antígeno B7-H1/biossíntese , Biópsia , DNA de Neoplasias/genética , Humanos , Sarda Melanótica de Hutchinson/genética , Sarda Melanótica de Hutchinson/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo
20.
Trends Cancer ; 5(12): 761-762, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31813452

RESUMO

Cancer cells devouring their neighbours to survive drug treatment is an abhorrent concept. Yet it holds hope for exploring new anticancer treatments. Tonnessen-Murray et al. adopted elegant cell-labelling methods using real-time microscopy to observe 'cellular gorging' by drug-treated cells. They discovered that in response to drug treatment, cells that became 'cannibals' were able to outlive their unindulged neighbours.


Assuntos
Antineoplásicos , Neoplasias da Mama , Canibalismo , Humanos , Hiperfagia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...