Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 84: 135-144, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29775815

RESUMO

The mechanical properties of tissue are sensitive to pathological changes, which is the basis for using dynamic elastography as a diagnostic tool. The purpose of this study is a concurrent cross-modality comparison of two dynamic elastography methods, Magnetic Resonance Elastography (MRE) and Scanning Laser Doppler Vibrometry (SLDV) using a single vibration source method. Cylindrical soft tissue mimicking specimens of Plastisol and Ecoflex are stimulated with 60, 100, 150, and 250 Hz sinusoidal vibration during imaging. Specimen stiffness was also varied by adjusting the softener amount in each material. Displacement fields acquired using the two methods show similarity in wave front geometry at all frequencies. Magnetic Resonance Elastography (MRE) with 3D inversion and Optical Elastography (OE) with averaged 1D curve fitting were used to derive complex shear moduli from each imaging modality. MRE and OE shear storage modulus (n = 3) results were closest at 150 Hz with Plastisol G' (MRE) = 9.03 ±â€¯0.43 kPa and G' (OE) = 8.46 ±â€¯0.14 kPa while Ecoflex was G' (MRE) = 15.71 ±â€¯0.95 kPa and G' (OE) = 13.71 ±â€¯0.03 kPa. Correlation between MRE and OE complex shear moduli related by all 36 coupled scans performed during this study yield a Pearson's correlation of ρ = 0.88 with p < 0.001 for G' (storage modulus) and ρ = 0.85 with p < 0.001 for G" (loss modulus). The simultaneous imaging approach yields stiffness values within the same range and acceptable error margins for MRE and OE.


Assuntos
Técnicas de Imagem por Elasticidade/instrumentação , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/instrumentação , Imagem Óptica/instrumentação , Resistência ao Cisalhamento , Vibração , Lasers , Imagens de Fantasmas
2.
J Eng Sci Med Diagn Ther ; 1(3): 0310071-310078, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35832533

RESUMO

Dynamic elastography methods attempt to quantitatively map soft tissue viscoelastic properties. Application to the fingertip, relevant to medical diagnostics and to improving tactile interfaces, is a novel and challenging application, given the small target size. In this feasibility study, an annular actuator placed on the surface of the fingertip and driven harmonically at multiple frequencies sequentially creates geometrically focused surface (GFS) waves. These surface wave propagation patterns are measured using scanning laser Doppler vibrometry. Reconstruction (the inverse problem) is performed in order to estimate fingertip soft tissue viscoelastic properties. The study identifies limitations of an analytical approach and introduces an optimization approach that utilizes a finite element (FE) model. Measurement at multiple frequencies reveals limitations of an assumption of homogeneity of material properties. Identified shear viscoelastic properties increase significantly as frequency increases and the depth of penetration of the surface wave is reduced, indicating that the fingertip is significantly stiffer near its surface.

3.
Phys Med Biol ; 62(19): 7682-7693, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28777745

RESUMO

The feasibility of sample interval modulation (SLIM) magnetic resonance elastography (MRE) for the in vivo mouse brain is assessed, and an alternative SLIM-MRE encoding method is introduced. In SLIM-MRE, the phase accumulation for each motion direction is encoded simultaneously by varying either the start time of the motion encoding gradient (MEG), SLIM-phase constant (SLIM-PC), or the initial phase of the MEG, SLIM-phase varying (SLIM-PV). SLIM-PC provides gradient moment nulling, but the mutual gradient shift necessitates increased echo time (TE). SLIM-PV requires no increased TE, but exhibits non-uniform flow compensation. Comparison was to conventional MRE using six C57BL/6 mice. For SLIM-PC, the Spearman's rank correlation to conventional MRE for the shear storage and loss modulus images were 80% and 76%, respectively, and likewise for SLIM-PV, 73% and 69%, respectively. The results of the Wilcoxon rank sum test showed that there were no statistically significant differences between the spatially averaged shear moduli derived from conventional-MRE, SLIM-PC, and SLIM-PV acquisitions. Both SLIM approaches were comparable to conventional MRE scans with Spearman's rank correlation of 69%-80% and with 3 times reduction in scan time. The SLIM-PC method had the best correlation, and SLIM-PV may be a useful tool in experimental conditions, where both measurement time and T2 relaxation is critical.


Assuntos
Encéfalo/diagnóstico por imagem , Técnicas de Imagem por Elasticidade/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Movimento
4.
Magn Reson Med ; 77(1): 273-284, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26787007

RESUMO

PURPOSE: To introduce a newly developed technique (DTI-MRE) for the simultaneous acquisition of diffusion tensor imaging (DTI) and 3D-vector field magnetic resonance elastography (MRE) data, and to demonstrate its feasibility when applied in vivo to the mouse brain. METHODS: In DTI-MRE, simultaneous encoding is achieved by using a series of diffusion/motion-sensitizing gradients (dMSGs) with specific timing and directions. By adjusting the duration of the dMSGs with the diffusion time and with the mechanical vibration frequency, the shear wave motion and diffusion are encoded into the MR phase and MR magnitude signals, respectively. The dMSGs are applied in a noncollinear and noncoplanar manner that optimizes the capture of both the DTI signal attenuation and the three-dimensional MRE displacements. In this work, the feasibility of the DTI-MRE technique was demonstrated on in vivo mouse brains (n=3) using a 9.4T animal MRI scanner. The DTI-MRE derived parameters (MD, mean diffusivity; FA, fractional anisotropy; MRE displacement fields; and shear modulus |G|) were compared with those acquired using conventional, separate MRE and diffusion methods. RESULTS: The averaged (MD, FA, and |G|) values for three mice are (0.580 ± 0.050 µm2 /ms, 0.43 ± 0.02, and 4.80 ± 0.06 kPa) and (0.583 ± 0.035 µm2 /ms, 0.46 ± 0.02, and 4.91 ± 0.19 kPa) for DTI-MRE, and conventional DTI and 3D-vector field MRE measurements, respectively. All derived parameters (MD, FA, |G|, and displacement) obtained using the combined DTI-MRE method and conventional methods were significantly correlated with P < 0.05. CONCLUSION: Simultaneous acquisition of DTI and 3D-vector field MRE is feasible in vivo and reduces the scan time by up to 50% compared with conventional, separate acquisitions, while providing an immediate co-registration of maps of diffusion properties and stiffness. Magn Reson Med 77:273-284, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Imagem de Tensor de Difusão/métodos , Técnicas de Imagem por Elasticidade/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Animais , Anisotropia , Encéfalo , Imagem de Tensor de Difusão/instrumentação , Módulo de Elasticidade , Técnicas de Imagem por Elasticidade/instrumentação , Desenho de Equipamento , Feminino , Imageamento por Ressonância Magnética/instrumentação , Camundongos , Camundongos Endogâmicos C57BL
5.
Phys Med Biol ; 60(17): 6975-90, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26305137

RESUMO

A novel technique for measuring in vivo human skin viscoelastic properties using optical elastography has been developed. The technique uses geometrically focused surface (GFS) waves that allow for wide bandwidth measurements of the wave field. An analytical solution for the case of a radiating annular disk surface source was fit to experimentally measured GFS waves, enabling an estimate of the frequency-dependent surface wavenumber, which can then be related to the dynamic shear modulus. Several viscoelastic models were then fit to the dynamic shear modulus dispersion curve. Viscoelastic models were evaluated based on their overall quality of fit and variability amongst healthy volunteers. An Ecoflex phantom was used to validate the procedure and results by comparison to similar studies using the same type of phantom. For skin results, it was found that the 'α' parameters from the fractional models had the least variability, with coefficients of variability of 0.15, and 0.16. The best fitting models were the standard linear solid, and the fractional Voigt, with a mean fit correlation coefficient, R(2), of 0.93, 0.89, respectively. This study has demonstrated the efficacy of this new method, and with larger studies the viscoelastic skin models could be used to identify various skin diseases and their response to treatment.


Assuntos
Módulo de Elasticidade/fisiologia , Técnicas de Imagem por Elasticidade/métodos , Modelos Teóricos , Imagens de Fantasmas , Pele/metabolismo , Adulto , Simulação por Computador , Humanos , Interpretação de Imagem Assistida por Computador , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA