Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetes ; 73(6): 1002-1011, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38530923

RESUMO

We sought to identify genetic/immunologic contributors of type 2 diabetes (T2D) in an indigenous American community by genotyping all study participants for both high-resolution HLA-DRB1 alleles and SLC16A11 to test their risk and/or protection for T2D. These genes were selected based on independent reports that HLA-DRB1*16:02:01 is protective for T2D and that SLC16A11 associates with T2D in individuals with BMI <35 kg/m2. Here, we test the interaction of the two loci with a more complete data set and perform a BMI sensitivity test. We defined the risk protection haplotype of SLC16A11, T-C-G-T-T, as allele 2 of a diallelic genetic model with three genotypes, SLC16A11*11, *12, and *22, where allele 1 is the wild type. Both earlier findings were confirmed. Together in the same logistic model with BMI ≥35 kg/m2, DRB1*16:02:01 remains protective (odds ratio [OR] 0.73), while SLC16A11 switches from risk to protection (OR 0.57 [*22] and 0.78 [*12]); an added interaction term was statistically significant (OR 0.49 [*12]). Bootstrapped (b = 10,000) statistical power of interaction, 0.4801, yielded a mean OR of 0.43. Sensitivity analysis demonstrated that the interaction is significant in the BMI range of 30-41 kg/m2. To investigate the epistasis, we used the primary function of the HLA-DRB1 molecule, peptide binding and presentation, to search the entire array of 15-mer peptides for both the wild-type and ancient human SLC16A11 molecules for a pattern of strong binding that was associated with risk and protection for T2D. Applying computer binding algorithms suggested that the core peptide at SLC16A11 D127G, FSAFASGLL, might be key for moderating risk for T2D with potential implications for type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Epistasia Genética , Predisposição Genética para Doença , Cadeias HLA-DRB1 , Transportadores de Ácidos Monocarboxílicos , Humanos , Diabetes Mellitus Tipo 2/genética , Cadeias HLA-DRB1/genética , Feminino , Masculino , Pessoa de Meia-Idade , Transportadores de Ácidos Monocarboxílicos/genética , Indígenas Norte-Americanos/genética , Adulto , Genótipo , Alelos , Índice de Massa Corporal , Haplótipos , Polimorfismo de Nucleotídeo Único , Idoso
2.
Int J Infect Dis ; 141S: 106983, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417617

RESUMO

OBJECTIVES: Tuberculosis (TB) remains a global health challenge due to various factors, including delayed diagnoses leading to the spread of infection, limited efficacy of current vaccination strategies, and emergence of drug-resistant strains. Here, we explore the significance of Mycobacterium tuberculosis (Mtb)-specific antigens to overcome these challenges. METHODS: A narrative review exploring the dynamics of Mtb-specific antigens and the related T cell immune responses across the TB spectrum. RESULTS: A variety of antigens are expressed at different stages of Mtb infection, driving its diverse antigenic landscape and associated T cell functional heterogeneity. Recent advances in high-coverage genomic and proteomic approaches may lead to the identification and characterization of antigens/epitopes within the context of TB. CONCLUSION: Factors such as magnitude of memory response, cytokine profile, immunodominance, and conservation of epitopes should be emphasized as crucial parameters in assessing the potential efficacy of these antigens in diagnostics or vaccine research. Recognizing the antigenic repertoire of Mtb changes with the infection stage, it is important to assess the availability of different subsets of Mtb antigens across the spectrum of infection for more precise disease classifications. Targeting specific antigens holds promise as a pathway for developing specific immunological biomarkers to predict TB reactivation in populations.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Proteômica , Antígenos de Bactérias , Interferon gama , Tuberculose/diagnóstico , Tuberculose/prevenção & controle , Mycobacterium tuberculosis/genética , Imunidade , Epitopos
3.
Front Immunol ; 14: 1127470, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122719

RESUMO

Antigen-specific T cells play a central role in the adaptive immune response and come in a wide range of phenotypes. T cell receptors (TCRs) mediate the antigen-specificities found in T cells. Importantly, high-throughput TCR sequencing provides a fingerprint which allows tracking of specific T cells and their clonal expansion in response to particular antigens. As a result, many studies have leveraged TCR sequencing in an attempt to elucidate the role of antigen-specific T cells in various contexts. Here, we discuss the published approaches to studying antigen-specific T cells and their specific TCR repertoire. Further, we discuss how these methods have been applied to study the TCR repertoire in various diseases in order to characterize the antigen-specific T cells involved in the immune control of disease.


Assuntos
Receptores de Antígenos de Linfócitos T , Linfócitos T , Receptores de Antígenos de Linfócitos T/genética , Antígenos , Imunidade Adaptativa , Especificidade de Anticorpos
4.
Sci Transl Med ; 14(670): eabm1463, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36350984

RESUMO

Chimeric antigen receptors (CARs) repurpose natural signaling components to retarget T cells to refractory cancers but have shown limited efficacy in persistent, recurrent malignancies. Here, we introduce "CAR Pooling," a multiplexed approach to rapidly identify CAR designs with clinical potential. Forty CARs with signaling domains derived from a range of immune cell lineages were evaluated in pooled assays for their ability to stimulate critical T cell effector functions during repetitive stimulation that mimics long-term tumor antigen exposure. Several domains were identified from the tumor necrosis factor (TNF) receptor family that have been primarily associated with B cells. CD40 enhanced proliferation, whereas B cell-activating factor receptor (BAFF-R) and transmembrane activator and CAML interactor (TACI) promoted cytotoxicity. These functions were enhanced relative to clinical benchmarks after prolonged antigen stimulation, and CAR T cell signaling through these domains fell into distinct states of memory, cytotoxicity, and metabolism. BAFF-R CAR T cells were enriched for a highly cytotoxic transcriptional signature previously associated with positive clinical outcomes. We also observed that replacing the 4-1BB intracellular signaling domain with the BAFF-R signaling domain in a clinically validated B cell maturation antigen (BCMA)-specific CAR resulted in enhanced activity in a xenotransplant model of multiple myeloma. Together, these results show that CAR Pooling is a general approach for rapid exploration of CAR architecture and activity to improve the efficacy of CAR T cell therapies.


Assuntos
Recidiva Local de Neoplasia , Receptores de Antígenos Quiméricos , Humanos , Recidiva Local de Neoplasia/metabolismo , Antígeno de Maturação de Linfócitos B , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia Adotiva/métodos , Linfócitos T , Imunoterapia , Transdução de Sinais
5.
Cell Rep Methods ; 2(12): 100350, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36590684

RESUMO

Gamma-delta (γδ) T cells contribute to the pathology of many immune-related diseases; however, no ex vivo assays to study their activities are currently available. Here, we established a methodology to characterize human allergen-reactive γδ T cells in peripheral blood using an activation-induced marker assay targeting upregulated 4-1BB and CD69 expression. Broad and reproducible ex vivo allergen-reactive γδ T cell responses were detected in donors sensitized to mouse, cockroach, house dust mite, and timothy grass, but the response did not differ from that in non-allergic participants. The reactivity to 4 different allergen extracts was readily detected in 54.2%-100% of allergic subjects in a donor- and allergen-specific pattern and was abrogated by T cell receptor (TCR) blocking. Analysis of CD40L upregulation and intracellular cytokine staining revealed a T helper type 1 (Th1)-polarized response against mouse and cockroach extract stimulation. These results support the existence of allergen-reactive γδ T cells and their potential use in rebalancing dysregulated Th2 responses in allergic diseases.


Assuntos
Hipersensibilidade , Linfócitos Intraepiteliais , Humanos , Animais , Camundongos , Alérgenos , Citocinas/metabolismo , Linfócitos Intraepiteliais/metabolismo
6.
ACS Synth Biol ; 3(12): 929-31, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25409531

RESUMO

In microbial communities, bacterial populations are commonly controlled using indiscriminate, broad range antibiotics. There are few ways to target specific strains effectively without disrupting the entire microbiome and local environment. Here, we use conjugation, a natural DNA horizontal transfer process among bacterial species, to deliver an engineered CRISPR interference (CRISPRi) system for targeting specific genes in recipient Escherichia coli cells. We show that delivery of the CRISPRi system is successful and can specifically repress a reporter gene in recipient cells, thereby establishing a new tool for gene regulation across bacterial cells and potentially for bacterial population control.


Assuntos
Sistemas CRISPR-Cas/genética , Conjugação Genética/genética , Engenharia Genética/métodos , Interferência de RNA , Escherichia coli/genética , Transferência Genética Horizontal , Modelos Genéticos , Biologia Sintética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...