Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Rev Immunol ; 22(11): 657-673, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35246670

RESUMO

Parkinson disease (PD) is a progressive neurodegenerative disease that affects peripheral organs as well as the central nervous system and involves a fundamental role of neuroinflammation in its pathophysiology. Neurohistological and neuroimaging studies support the presence of ongoing and end-stage neuroinflammatory processes in PD. Moreover, numerous studies of peripheral blood and cerebrospinal fluid from patients with PD suggest alterations in markers of inflammation and immune cell populations that could initiate or exacerbate neuroinflammation and perpetuate the neurodegenerative process. A number of disease genes and risk factors have been identified as modulators of immune function in PD and evidence is mounting for a role of viral or bacterial exposure, pesticides and alterations in gut microbiota in disease pathogenesis. This has led to the hypothesis that complex gene-by-environment interactions combine with an ageing immune system to create the 'perfect storm' that enables the development and progression of PD. We discuss the evidence for this hypothesis and opportunities to harness the emerging immunological knowledge from patients with PD to create better preclinical models with the long-term goal of enabling earlier identification of at-risk individuals to prevent, delay and more effectively treat the disease.


Assuntos
Microbioma Gastrointestinal , Doenças do Sistema Imunitário , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/patologia , Doença de Parkinson/terapia , Inflamação
2.
Front Immunol ; 13: 1056417, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618392

RESUMO

Introduction: Progranulin (PGRN) is a secreted glycoprotein, the expression of which is linked to several neurodegenerative diseases. Although its specific function is still unclear, several studies have linked it with lysosomal functions and immune system regulation. Here, we have explored the role of PGRN in peripheral and central immune system homeostasis by investigating the consequences of PGRN deficiency on adaptive and innate immune cell populations. Methods: First, we used gene co-expression network analysis of published data to test the hypothesis that Grn has a critical role in regulating the activation status of immune cell populations in both central and peripheral compartments. To investigate the extent to which PGRN-deficiency resulted in immune dysregulation, we performed deep immunophenotyping by flow cytometry of 19-24-month old male and female Grn-deficient mice (PGRN KO) and littermate Grn-sufficient controls (WT). Results: Male PGRN KO mice exhibited a lower abundance of microglial cells with higher MHC-II expression, increased CD44 expression on monocytes in the brain, and more CNS-associated CD8+ T cells compared to WT mice. Furthermore, we observed an increase in CD44 on CD8+ T cells in the peripheral blood. Female PGRN KO mice also had fewer microglia compared to WT mice, and we also observed reduced expression of MHC-II on brain monocytes. Additionally, we found an increase in Ly-6Chigh monocyte frequency and decreased CD44 expression on CD8+ and CD4+ T cells in PGRN KO female blood. Given that Gpnmb, which encodes for the lysosomal protein Glycoprotein non-metastatic melanoma protein B, has been reported to be upregulated in PGRN KO mice, we investigated changes in GPNMB protein expression associated with PGRN deficits and found that GPNMB is modulated in myeloid cells in a sex-specific manner. Discussion: Our data suggest that PGRN and GPNMB jointly regulate the peripheral and the central immune system in a sex-specific manner; thus, understanding their associated mechanisms could pave the way for developing new neuroprotective strategies to modulate central and peripheral inflammation to lower risk for neurodegenerative diseases and possibly delay or halt progression.


Assuntos
Linfócitos T CD8-Positivos , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Feminino , Animais , Camundongos , Progranulinas/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Granulinas , Camundongos Knockout , Sistema Imunitário
3.
Gastroenterology ; 160(5): 1694-1708.e3, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33388316

RESUMO

BACKGROUND & AIMS: Patients with inflammatory bowel disease (IBD) demonstrate nutritional selenium deficiencies and are at greater risk of developing colon cancer. Previously, we determined that global reduction of the secreted antioxidant selenium-containing protein, selenoprotein P (SELENOP), substantially increased tumor development in an experimental colitis-associated cancer (CAC) model. We next sought to delineate tissue-specific contributions of SELENOP to intestinal inflammatory carcinogenesis and define clinical context. METHODS: Selenop floxed mice crossed with Cre driver lines to delete Selenop from the liver, myeloid lineages, or intestinal epithelium were placed on an azoxymethane/dextran sodium sulfate experimental CAC protocol. SELENOP loss was assessed in human ulcerative colitis (UC) organoids, and expression was queried in human and adult UC samples. RESULTS: Although large sources of SELENOP, both liver- and myeloid-specific Selenop deletion failed to modify azoxymethane/dextran sodium sulfate-mediated tumorigenesis. Instead, epithelial-specific deletion increased CAC tumorigenesis, likely due to elevated oxidative stress with a resulting increase in genomic instability and augmented tumor initiation. SELENOP was down-regulated in UC colon biopsies and levels were inversely correlated with endoscopic disease severity and tissue S100A8 (calprotectin) gene expression. CONCLUSIONS: Although global selenium status is typically assessed by measuring liver-derived plasma SELENOP levels, our results indicate that the peripheral SELENOP pool is dispensable for CAC. Colonic epithelial SELENOP is the main contributor to local antioxidant capabilities. Thus, colonic SELENOP is the most informative means to assess selenium levels and activity in IBD patients and may serve as a novel biomarker for UC disease severity and identify patients most predisposed to CAC development.


Assuntos
Colite Ulcerativa/metabolismo , Neoplasias Associadas a Colite/prevenção & controle , Colite/metabolismo , Colo/metabolismo , Mucosa Intestinal/metabolismo , Estresse Oxidativo , Selenoproteína P/metabolismo , Adolescente , Animais , Azoximetano , Estudos de Casos e Controles , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Criança , Pré-Escolar , Colite/induzido quimicamente , Colite/genética , Colite Ulcerativa/genética , Neoplasias Associadas a Colite/induzido quimicamente , Neoplasias Associadas a Colite/genética , Neoplasias Associadas a Colite/metabolismo , Colo/patologia , Dano ao DNA , Sulfato de Dextrana , Modelos Animais de Doenças , Feminino , Instabilidade Genômica , Humanos , Mucosa Intestinal/patologia , Fígado/metabolismo , Masculino , Camundongos Knockout , Células Mieloides/metabolismo , Selenoproteína P/genética
4.
Mucosal Immunol ; 11(5): 1363-1374, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29907869

RESUMO

Blood vessel epicardial substance (BVES), or POPDC1, is a tight junction-associated transmembrane protein that modulates epithelial-to-mesenchymal transition (EMT) via junctional signaling pathways. There have been no in vivo studies investigating the role of BVES in colitis. We hypothesized that BVES is critical for maintaining colonic epithelial integrity. At baseline, Bves-/- mouse colons demonstrate increased crypt height, elevated proliferation, decreased apoptosis, altered intestinal lineage allocation, and dysregulation of tight junctions with functional deficits in permeability and altered intestinal immunity. Bves-/- mice inoculated with Citrobacter rodentium had greater colonic injury, increased colonic and mesenteric lymph node bacterial colonization, and altered immune responses after infection. We propose that increased bacterial colonization and translocation result in amplified immune responses and worsened injury. Similarly, dextran sodium sulfate (DSS) treatment resulted in greater histologic injury in Bves-/- mice. Two different human cell lines (Caco2 and HEK293Ts) co-cultured with enteropathogenic E. coli showed increased attaching/effacing lesions in the absence of BVES. Finally, BVES mRNA levels were reduced in human ulcerative colitis (UC) biopsy specimens. Collectively, these studies suggest that BVES plays a protective role both in ulcerative and infectious colitis and identify BVES as a critical protector of colonic mucosal integrity.


Assuntos
Colite Ulcerativa/metabolismo , Colo/metabolismo , Células Epiteliais/metabolismo , Absorção Intestinal/fisiologia , Proteínas de Membrana/metabolismo , Adulto , Animais , Células CACO-2 , Moléculas de Adesão Celular , Linhagem Celular , Linhagem Celular Tumoral , Citrobacter rodentium/patogenicidade , Técnicas de Cocultura , Colo/efeitos dos fármacos , Sulfato de Dextrana/farmacologia , Células Epiteliais/efeitos dos fármacos , Escherichia coli/metabolismo , Feminino , Células HEK293 , Humanos , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteínas Musculares , Permeabilidade/efeitos dos fármacos , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo
5.
Gut ; 66(5): 852-862, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28389570

RESUMO

OBJECTIVE: Blood vessel epicardial substance (BVES) is a tight junction-associated protein that regulates epithelial-mesenchymal states and is underexpressed in epithelial malignancy. However, the functional impact of BVES loss on tumourigenesis is unknown. Here we define the in vivo role of BVES in colitis-associated cancer (CAC), its cellular function and its relevance to patients with IBD. DESIGN: We determined BVES promoter methylation status using an Infinium HumanMethylation450 array screen of patients with UC with and without CAC. We also measured BVES mRNA levels in a tissue microarray consisting of normal colons and CAC samples. Bves-/- and wild-type mice (controls) were administered azoxymethane (AOM) and dextran sodium sulfate (DSS) to induce tumour formation. Last, we used a yeast two-hybrid screen to identify BVES interactors and performed mechanistic studies in multiple cell lines to define how BVES reduces c-Myc levels. RESULTS: BVES mRNA was reduced in tumours from patients with CAC via promoter hypermethylation. Importantly, BVES promoter hypermethylation was concurrently present in distant non-malignant-appearing mucosa. As seen in human patients, Bves was underexpressed in experimental inflammatory carcinogenesis, and Bves-/- mice had increased tumour multiplicity and degree of dysplasia after AOM/DSS administration. Molecular analysis of Bves-/- tumours revealed Wnt activation and increased c-Myc levels. Mechanistically, we identified a new signalling pathway whereby BVES interacts with PR61α, a protein phosphatase 2A regulatory subunit, to mediate c-Myc destruction. CONCLUSION: Loss of BVES promotes inflammatory tumourigenesis through dysregulation of Wnt signalling and the oncogene c-Myc. BVES promoter methylation status may serve as a CAC biomarker.


Assuntos
Carcinogênese/genética , Moléculas de Adesão Celular/genética , Colite Ulcerativa/metabolismo , Neoplasias do Colo/metabolismo , Proteínas de Membrana/genética , Proteínas Musculares/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Biomarcadores Tumorais/genética , Células CACO-2 , Colite/induzido quimicamente , Colite/genética , Colite/metabolismo , Colite Ulcerativa/genética , Colo/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Metilação de DNA , Sulfato de Dextrana , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , RNA Mensageiro/metabolismo , Via de Sinalização Wnt
6.
Stem Cells ; 34(6): 1626-36, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26891025

RESUMO

Blood vessel epicardial substance (BVES/Popdc1) is a junctional-associated transmembrane protein that is underexpressed in a number of malignancies and regulates epithelial-to-mesenchymal transition. We previously identified a role for BVES in regulation of the Wnt pathway, a modulator of intestinal stem cell programs, but its role in small intestinal (SI) biology remains unexplored. We hypothesized that BVES influences intestinal stem cell programs and is critical to SI homeostasis after radiation injury. At baseline, Bves(-/-) mice demonstrated increased crypt height, as well as elevated proliferation and expression of the stem cell marker Lgr5 compared to wild-type (WT) mice. Intercross with Lgr5-EGFP reporter mice confirmed expansion of the stem cell compartment in Bves(-/-) mice. To examine stem cell function after BVES deletion, we used ex vivo 3D-enteroid cultures. Bves(-/-) enteroids demonstrated increased stemness compared to WT, when examining parameters such as plating efficiency, stem spheroid formation, and retention of peripheral cystic structures. Furthermore, we observed increased proliferation, expression of crypt-base columnar "CBC" and "+4" stem cell markers, amplified Wnt signaling, and responsiveness to Wnt activation in the Bves(-/-) enteroids. Bves expression was downregulated after radiation in WT mice. Moreover, after radiation, Bves(-/-) mice demonstrated significantly greater SI crypt viability, proliferation, and amplified Wnt signaling in comparison to WT mice. Bves(-/-) mice also demonstrated elevations in Lgr5 and Ascl2 expression, and putative damage-responsive stem cell populations marked by Bmi1 and TERT. Therefore, BVES is a key regulator of intestinal stem cell programs and mucosal homeostasis. Stem Cells 2016;34:1626-1636.


Assuntos
Moléculas de Adesão Celular/metabolismo , Raios gama , Intestinos/citologia , Proteínas Musculares/metabolismo , Células-Tronco/citologia , Animais , Moléculas de Adesão Celular/genética , Sobrevivência Celular/efeitos da radiação , Regulação para Baixo/efeitos da radiação , Feminino , Deleção de Genes , Homeostase/efeitos da radiação , Masculino , Camundongos Endogâmicos C57BL , Proteínas Musculares/genética , Tolerância a Radiação/efeitos da radiação , Esferoides Celulares/metabolismo , Esferoides Celulares/efeitos da radiação , Células-Tronco/metabolismo , Células-Tronco/efeitos da radiação , Via de Sinalização Wnt/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...