Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Infect Dis ; 24(1): 281, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439047

RESUMO

BACKGROUND: The evolution of SARS-CoV-2 has been observed from the very beginning of the fight against COVID-19, some mutations are indicators of potentially dangerous variants of the virus. However, there is no clear association between the genetic variants of SARS-CoV-2 and the severity of COVID-19. We aimed to analyze the genetic variability of RdRp in correlation with different courses of COVID-19. RESULTS: The prospective study included 77 samples of SARS-CoV-2 isolated from outpatients (1st degree of severity) and hospitalized patients (2nd, 3rd and 4th degree of severity). The retrospective analyses included 15,898,266 cases of SARS-CoV-2 genome sequences deposited in the GISAID repository. Single-nucleotide variants were identified based on the four sequenced amplified fragments of SARS-CoV-2. The analysis of the results was performed using appropriate statistical methods, with p < 0.05, considered statistically significant. Additionally, logistic regression analysis was performed to predict the strongest determinants of the observed relationships. The number of mutations was positively correlated with the severity of the COVID-19, and older male patients. We detected four mutations that significantly increased the risk of hospitalization of COVID-19 patients (14676C > T, 14697C > T, 15096 T > C, and 15279C > T), while the 15240C > T mutation was common among strains isolated from outpatients. The selected mutations were searched worldwide in the GISAID database, their presence was correlated with the severity of COVID-19. CONCLUSION: Identified mutations have the potential to be used to assess the increased risk of hospitalization in COVID-19 positive patients. Experimental studies and extensive epidemiological data are needed to investigate the association between individual mutations and the severity of COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Masculino , SARS-CoV-2/genética , COVID-19/epidemiologia , Genótipo , Estudos Prospectivos , Estudos Retrospectivos , Pacientes Ambulatoriais , RNA Polimerase Dependente de RNA
2.
Eur Biophys J ; 46(7): 655-663, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28116476

RESUMO

Membrane transporters are a vital class of proteins for which there is little available structural and thermodynamic information. The Major Facilitator Superfamily (MFS) is a large group of transport proteins responsible for transporting a wide range of substrates in eukaryotes and prokaryotes. We have used far-UV circular dichroism (CD) to assess whether transporters from this superfamily have the same chemical and thermal stability. We have compared the stability of five different MFS transporters; PepTSo from Shewanella oneidensis and LacY, GalP, GlpT and XylE from Escherichia coli, as well as a known stable mutant of LacY, LacY-C154G. CD stability measurements revealed that these transporters fall into two broad categories. The 'urea-sensitive' category includes LacY-WT, GalP and GlpT, which each lose around a third of their secondary structure in 8 M urea and two-thirds in the harsher denaturant guanidine hydrochloride (GuHCl). The 'urea-resistant' category includes LacY-C154G, XylE and PepTSo. These resistant transporters lose very little secondary structure in 8 M urea, and LacY-C154G and PepTSo resist denaturation by GuHCl up to a concentration of 4 M. The stabilities of LacY, GlpT, XylE and PepTSo correlated with their crystal structure conformations, implying that a similar conformation is adopted in vitro. The 'urea-sensitive' transporters LacY and GlpT were crystallised inward-open states, while XylE and PepTSo were crystallised in occluded states. This study highlights the importance of studying a wide range of similar proteins, as a similar secondary structure and overall function does not necessarily confer the same stability in vitro.


Assuntos
Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Guanidina/farmacologia , Ligantes , Modelos Moleculares , Domínios Proteicos , Estabilidade Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína , Desdobramento de Proteína/efeitos dos fármacos , Ureia/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...