Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecohydrology ; 13(1): 1-10, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32983317

RESUMO

Hyporheic zones contribute to lower temperatures in many rivers, creating a longitudinal heterogeneous array of thermal refuges. In this study, we had the unique opportunity to show temperature reduction along actual hyporheic zone pathlines in a large river system that contribute to the maintenance of refuges through discharge into off-channel habitats. Temperature was monitored in a dense network of wells that were located along pathlines in small islands, from a calibrated ground-water flow model. Temperature along one 600-m pathline was reduced about 7 °C. Among three islands that were adjacent to the river, the northern two showed exponential decrease in temperature with distance, with fitted thermal Péclet numbers of 2.7 and 6.5, while the southern island showed no significant decrease. We suggest this is due to the higher infiltration rate in the wet season in this larger, more mature island, which suppresses hyporheic flow in the wet season. Stable isotope sampling showed that values of δ2H were higher in areas where we observed lower temperatures. The overall relationship of δ2H versus temperature was significant with a slope of -0.329. This implies that lower temperatures are associated with water that has had contact with deeper groundwater or that lower temperatures have been affected by local rainfall infiltration, or water that has entered the hyporheic zone in winter. These findings are important because they allow estimation of the temperature benefit that may be achieved in similar geomorphic settings, providing implications for riparian restoration.

2.
J Ecohydraul ; 1: 1-13, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33898904

RESUMO

Diadromous fish populations face multiple challenges along their migratory routes. These challenges include suboptimal water quality, harvest, and barriers to longitudinal and lateral connectivity. Interactions among factors influencing migration success make it challenging to assess management options for improving migratory fish conditions along riverine migration corridors. We describe a spatially explicit simulation model that integrates complex individual behaviors of fall-run Chinook Salmon (Oncorhynchus tshawytscha) and summer-run steelhead trout (O. mykiss) during migration, responds to variable habitat conditions over a large extent of the Columbia River, and links migration corridor conditions to fish condition outcomes. The model is built around a mechanistic behavioral decision tree that drives individual interactions of fish within their simulated environments. By simulating several thermalscapes with alternative scenarios of thermal refuge availability, we examined how behavioral thermoregulation in cold-water refuges influenced migrating fish conditions. Outcomes of the migration corridor simulation model show that cold-water refuges can provide relief from exposure to high water temperatures, but do not substantially contribute to energy conservation by migrating adults. Simulated cooling of the Columbia River decreased reliance on cold-water refuges and there were slight reductions in migratory energy expenditure. This modeling of simulated thermalscapes provides a framework for assessing the contribution of cold-water refuges to the success of migrating fishes, but any final determination will depend on analyzing fish survival and health for their entire migration, water temperature management goals and species recovery targets.

3.
Landsc Ecol ; 34(4): 737-754, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33424124

RESUMO

CONTEXT: Diadromous fish populations in the Pacific Northwest face challenges along their migratory routes from declining habitat quality, harvest, and barriers to longitudinal connectivity. These stressors complicate the prioritization of proposed management actions intended to improve conditions for migratory fishes including anadromous salmon and trout. OBJECTIVES: We describe a multi-scale hybrid mechanistic-probabilistic simulation model linking migration corridor conditions to fish fitness outcomes. We demonstrate the model's utility using a case study of salmon and steelhead adults in the Columbia River migration corridor exposed to spatially- and temporally-varying stressors. METHODS: The migration corridor simulation model is based on a behavioral decision tree that governs individual interactions with the environment, and an energetic submodel that estimates the hourly costs of migration. Emergent properties of the migration corridor simulation model include passage time, energy use, and survival. RESULTS: We observed that the simulated fishes' initial energy density, the migration corridor temperatures they experienced, and their history of behavioral thermoregulation were the primary determinants of their fitness outcomes. Insights gained from use of the model might be exploited to identify management interventions that increase successful migration outcomes. CONCLUSIONS: This paper describes new methods that extend the suite of tools available to aquatic biologists and conservation practitioners. We have developed a 2-dimensional spatially-explicit behavioral and physiological model and illustrated how it can be used to simulate fish migration within a river system. Our model can be used to evaluate trade-offs between behavioral thermoregulation and fish fitness at population scales.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...