Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 99(9)2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37591660

RESUMO

Gut microbiomes are important determinants of animal health. In sentinel marine mammals where animal and ocean health are connected, microbiome impacts can scale to ecosystem-level importance. Mass mortality events affect cetacean populations worldwide, yet little is known about the contributory role of their gut bacterial communities to disease susceptibility and progression. Here, we characterized bacterial communities from fecal samples of common bottlenose dolphins, Tursiops truncatus, across an unusual mortality event (UME) caused by dolphin Morbillivirus (DMV). 16S rRNA gene sequence analysis revealed similar diversity and structure of bacterial communities in individuals stranding before, during, and after the 2013-2015 Mid-Atlantic Bottlenose Dolphin UME and these trends held in a subset of dolphins tested by PCR for DMV infection. Fine-scale shifts related to the UME were not common (10 of 968 bacterial taxa) though potential biomarkers for health monitoring were identified within the complex bacterial communities. Accordingly, acute DMV infection was not associated with a distinct gut bacterial community signature in T. truncatus. However, temporal stratification of DMV-positive dolphins did reveal changes in bacterial community composition between early and late outbreak periods, suggesting that gut community disruptions may be amplified by the indirect effects of accumulating health burdens associated with chronic morbidity.


Assuntos
Golfinho Nariz-de-Garrafa , Microbioma Gastrointestinal , Microbiota , Morbillivirus , Animais , Morbillivirus/genética , RNA Ribossômico 16S/genética
2.
Anat Rec (Hoboken) ; 305(3): 688-703, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34288509

RESUMO

Odontocete cetaceans have undergone profound modifications to their integument and sensory systems and are generally thought to lack specialized exocrine glands that in terrestrial mammals function to produce chemical signals (Thewissen & Nummela, 2008). Keenan-Bateman et al. (2016, 2018), though, introduced an enigmatic exocrine gland, associated with the false gill slit pigmentation pattern in Kogia breviceps. These authors provided a preliminary description of this cervical gill slit gland in their helminthological studies of the parasitic nematode, Crassicauda magna. This study offers the first detailed gross and histological description of this gland and reports upon key differences between immature and mature individuals. Investigation reveals it is a complex, compound tubuloalveolar gland with a well-defined duct that leads to a large, and expandable central chamber, which in turn leads to two caudally projecting diverticula. All regions of the gland contain branched tubular and alveolar secretory regions, although most are found in the caudal diverticula, where the secretory process is holocrine. The gland lies between slips of cutaneous muscle, and is innervated by lamellar corpuscles, resembling Pacinian's corpuscles, suggesting that its secretory product may be actively expressed into the environment. Mature K. breviceps display larger gland size, and increased functional activity in glandular tissues, as compared to immature individuals. These results demonstrate that the cervical gill slit gland of K. breviceps shares morphological features of the specialized, chemical signaling, exocrine glands of terrestrial members of the Cetartiodactyla.


Assuntos
Brânquias , Baleias , Animais , Glândulas Exócrinas , Baleias/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA