Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 154(2): 283-92, 2001 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-11470818

RESUMO

We have examined the dynamics of nuclear repositioning and the establishment of a replication timing program for the actively transcribed dihydrofolate reductase (DHFR) locus and the silent beta-globin gene locus in Chinese hamster ovary cells. The DHFR locus was internally localized and replicated early, whereas the beta-globin locus was localized adjacent to the nuclear periphery and replicated during the middle of S phase, coincident with replication of peripheral heterochromatin. Nuclei were prepared from cells synchronized at various times during early G1 phase and stimulated to enter S phase by introduction into Xenopus egg extracts, and the timing of DHFR and beta-globin replication was evaluated in vitro. With nuclei isolated 1 h after mitosis, neither locus was preferentially replicated before the other. However, with nuclei isolated 2 or 3 h after mitosis, there was a strong preference for replication of DHFR before beta-globin. Measurements of the distance of DHFR and beta-globin to the nuclear periphery revealed that the repositioning of the beta-globin locus adjacent to peripheral heterochromatin also took place between 1 and 2 h after mitosis. These results suggest that the CHO beta-globin locus acquires the replication timing program of peripheral heterochromatin upon association with the peripheral subnuclear compartment during early G1 phase.


Assuntos
Replicação do DNA/fisiologia , DNA/biossíntese , Fase G1/fisiologia , Globinas/genética , Heterocromatina/metabolismo , Animais , Bromodesoxiuridina , Células CHO , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Cricetinae , Globinas/biossíntese , Hibridização in Situ Fluorescente , Mitose/fisiologia , Fase S/fisiologia , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Fatores de Tempo , Xenopus
2.
EMBO J ; 17(6): 1810-8, 1998 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-9501102

RESUMO

The origin decision point (ODP) was originally identified as a distinct point during G1-phase when Chinese hamster ovary (CHO) cell nuclei experience a transition that is required for specific recognition of the dihydrofolate reductase (DHFR) origin locus by Xenopus egg extracts. Passage of cells through the ODP requires a mitogen-independent protein kinase that is activated prior to restriction point control. Here we show that inhibition of an early G1-phase protein kinase pathway by the addition of 2-aminopurine (2-AP) prior to the ODP arrests CHO cells in G1-phase. Transformation with simian virus 40 (SV40) abrogated this arrest point, resulting in the entry of cultured cells into S-phase in the presence of 2-AP and a disruption of the normal pattern of initiation sites at the DHFR locus. Cells treated with 2-AP after the ODP initiated replication specifically within the DHFR origin locus. Transient exposure of transformed cells to 2-AP during the ODP transition also disrupted origin choice, whereas non-transformed cells arrested in G1-phase and then passed through a delayed ODP after removal of 2-AP from the medium. We conclude that mammalian cells have many potential sites at which they can initiate replication. Normally, events occurring during the early G1-phase ODP transition determine which of these sites will be the preferred initiation site. However, if chromatin is exposed to S-phase-promoting factors prior to this transition, mammalian cells, like Xenopus and Drosophila embryos, can initiate replication without origin specification.


Assuntos
Transformação Celular Viral/fisiologia , Fase G1/genética , Origem de Replicação/fisiologia , Tetra-Hidrofolato Desidrogenase/genética , 2-Aminopurina/farmacologia , Animais , Antimetabólitos/farmacologia , Afidicolina/farmacologia , Células CHO , Cricetinae , Replicação do DNA/genética , Inibidores Enzimáticos/farmacologia , Fase G1/efeitos dos fármacos , Fase S/genética , Vírus 40 dos Símios/fisiologia
3.
J Cell Biol ; 135(5): 1207-18, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8947545

RESUMO

Xenopus egg extracts initiate DNA replication specifically at the dihydrofolate reductase (DHFR) origin locus with intact nuclei from late G1-phase CHO cells as a substrate, but at nonspecific sites when purified DNA is assembled by the extract into an embryonic nuclear structure. Here we show that late G1-phase CHO nuclei can be cycled through an in vitro Xenopus egg mitosis, resulting in the assembly of an embryonic nuclear envelope around G1-phase chromatin. Surprisingly, replication within these chimeric nuclei initiated at a novel specific site in the 5' region of the DHFR structural gene that does not function as an origin in cultured CHO cells. Preferential initiation at this unusual site required topoisomerase II-mediated chromosome condensation during mitosis. Nuclear envelope breakdown and reassembly in the absence of chromosome condensation resulted in nonspecific initiation. Introduction of condensed chromosomes from metaphase-arrested CHO cells directly into Xenopus egg extracts was sufficient to elicit assembly of chimeric nuclei and preferential initiation at this same site. These results demonstrate clearly that chromosome architecture can determine the sites of initiation of replication in Xenopus egg extracts, supporting the hypothesis that patterns of initiation in vertebrate cells are established by higher order features of chromosome structure.


Assuntos
Núcleo Celular/metabolismo , Cromossomos/ultraestrutura , Replicação do DNA , Origem de Replicação , Animais , Células CHO , Extratos Celulares , Núcleo Celular/ultraestrutura , Cromossomos/metabolismo , Cricetinae , Fase G1 , Genes , Metáfase , Mitose , Membrana Nuclear/metabolismo , Óvulo , Tetra-Hidrofolato Desidrogenase/genética , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA