Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(2): e10937, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38405410

RESUMO

Climate change involves increases in mean temperature and changes in temperature variability at multiple temporal scales but research rarely considers these temporal scales. The climate variability hypothesis (CVH) provides a conceptual framework for exploring the potential effects of annual scale thermal variability across climatic zones. The CVH predicts ectotherms in temperate regions tolerate a wider range of temperatures than those in tropical regions in response to greater annual variability in temperate regions. However, various other aspects of thermal regimes (e.g. diel variability), organisms' size and taxonomic identity are also hypothesised to influence thermal tolerance. Indeed, high temperatures in the tropics have been proposed as constraining organisms' ability to tolerate a wide range of temperatures, implying that high annual maximum temperatures would be associated with tolerating a narrow range of temperatures. We measured thermal regimes and critical thermal limits (CTmax and CTmin) of freshwater insects in the orders Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies) along elevation gradients in streams in temperate and tropical regions of eastern Australia and tested the CVH by determining which variables were most correlated with thermal breadth (T br = CTmax - CTmin). Consistent with the CVH, T br tended to increase with increasing annual temperature range. T br also increased with body size and T br was generally wider in Plecoptera than in Ephemeroptera or Trichoptera. We also find some support for a related hypothesis, the climate extreme hypothesis (CEH), particularly for predicting upper thermal limits. We found no evidence that higher annual maximum temperature constrained individuals' abilities to tolerate a wide range of temperatures. The support for the CVH we document suggests that temperate organisms may be able to tolerate wider ranges of temperatures than tropical organisms. There is an urgent need to investigate other aspects of thermal regimes, such as diel temperature cycling and minimum temperature.

2.
Sci Total Environ ; 912: 169003, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38043815

RESUMO

Increasing salinity is a concern for biodiversity in many freshwater ecosystems globally. Single species laboratory toxicity tests show major differences in freshwater organism survival depending on the specific ions that comprise salinity types and/or their ion ratios. Toxicity has been shown to be reduced by altering ionic composition, despite increasing (total) salinity. For insistence, single species tests show the toxicity of sodium bicarbonate (NaHCO3, which commonly is a large proportion of the salts from coalbeds) to freshwater invertebrates is reduced by adding magnesium (Mg2+) or chloride (Cl-). However, it is uncertain whether reductions in mortality observed in single-species laboratory tests predict effects within populations, communities and to ecosystem processes in more complex multi-species systems both natural and semi-natural. Here we report the results of an outdoor multi-species mesocosm experiment to determine if the effects of NaHCO3 are reduced by increasing the concentrations of Mg2+ or Cl- on: a) stream macroinvertebrate populations and communities; b) benthic chlorophyll-a and; c) the ecosystem process of leaf litter decomposition. We found a large effect of a high NaHCO3 concentration (≈4.45 mS/cm) with reduced abundances of multiple taxa, reduced emergence of adult insects and reduced species richness, altered community structure and increased leaf litter breakdown rates but no effect on benthic chlorophyll-a. However, despite predictions based on laboratory findings, we found no evidence that the addition of either Mg2+ or Cl- altered the effect of NaHCO3. In semi-natural environments such as mesocosms, and natural environments, organisms are subject to varying temperature and habitat factors, while also interacting with other species and trophic levels (e.g. predation, competition, facilitation), which are absent in single species laboratory tests. Thus, it should not be assumed single-species tests are good predictors of the effects of changing ionic compositions on stream biota in more natural environments.


Assuntos
Cloretos , Ecossistema , Animais , Bicarbonatos , Cloretos/toxicidade , Clorofila , Clorofila A , Invertebrados , Magnésio , Rios/química , Bicarbonato de Sódio/farmacologia
3.
Aquat Toxicol ; 264: 106691, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37866165

RESUMO

Globally, river pesticide concentrations are associated with regional and local stream invertebrate diversity declines. Pesticides often co-occur with elevated nutrients (e.g. nitrogen and phosphorus) and sediments related to agriculture, making their individual effects difficult to disentangle. These effects are also less well studied in Asia, than in other geographic regions. Within Asia, India is one of the largest producers and users of pesticides and has approximately 60% of total land mass used for agriculture. Here we examine the responses of Indian river invertebrate communities subjected to malathion, nutrients, and sediment additions in a semi-orthogonal design, in three sequential (through time) short-term (120 h) mesocosm experiments. Additionally, a series of single-species toxicity tests were run that used 24 h exposure and 72 h recovery to examine the sensitivity of 13 local invertebrate taxa to malathion, and 9 taxa to cypermethrin, comparing these results to those from other biogeographic regions. Mesocosm results indicate that malathion exposure had a major effect compared to other stressors on communities, with a lesser effect of nutrients and/or sediments. In mesocosms, taxa richness, total abundance and the abundance of sensitive species all declined associated with malathion concentrations. Comparisons of organism sensitivities from other geographic locations and those in the current paper suggest taxa in India are relatively tolerant to malathion and cypermethrin. Our results further reinforce that the high observed aquatic pesticide concentrations known to occur in Asian freshwater ecosystems are likely to be negatively affecting biodiversity, homogenising biota towards those most stress tolerant.


Assuntos
Inseticidas , Praguicidas , Poluentes Químicos da Água , Animais , Inseticidas/toxicidade , Ecossistema , Malation/toxicidade , Poluentes Químicos da Água/toxicidade , Invertebrados , Praguicidas/toxicidade , Rios
4.
Glob Chang Biol ; 29(2): 355-374, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36131677

RESUMO

Rivers suffer from multiple stressors acting simultaneously on their biota, but the consequences are poorly quantified at the global scale. We evaluated the biological condition of rivers globally, including the largest proportion of countries from the Global South published to date. We gathered macroinvertebrate- and fish-based assessments from 72,275 and 37,676 sites, respectively, from 64 study regions across six continents and 45 nations. Because assessments were based on differing methods, different systems were consolidated into a 3-class system: Good, Impaired, or Severely Impaired, following common guidelines. The proportion of sites in each class by study area was calculated and each region was assigned a Köppen-Geiger climate type, Human Footprint score (addressing landscape alterations), Human Development Index (HDI) score (addressing social welfare), % rivers with good ambient water quality, % protected freshwater key biodiversity areas; and % of forest area net change rate. We found that 50% of macroinvertebrate sites and 42% of fish sites were in Good condition, whereas 21% and 29% were Severely Impaired, respectively. The poorest biological conditions occurred in Arid and Equatorial climates and the best conditions occurred in Snow climates. Severely Impaired conditions were associated (Pearson correlation coefficient) with higher HDI scores, poorer physico-chemical water quality, and lower proportions of protected freshwater areas. Good biological conditions were associated with good water quality and increased forested areas. It is essential to implement statutory bioassessment programs in Asian, African, and South American countries, and continue them in Oceania, Europe, and North America. There is a need to invest in assessments based on fish, as there is less information globally and fish were strong indicators of degradation. Our study highlights a need to increase the extent and number of protected river catchments, preserve and restore natural forested areas in the catchments, treat wastewater discharges, and improve river connectivity.


Assuntos
Ecossistema , Monitoramento Ambiental , Animais , Humanos , Monitoramento Ambiental/métodos , Rios , Peixes , Qualidade da Água , Biodiversidade , Invertebrados
5.
Glob Chang Biol ; 29(3): 590-602, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36114730

RESUMO

Understanding the cumulative effects of multiple stressors on biodiversity is key to managing their impacts. Stressor interactions are often studied using an additive/antagonistic/synergistic typology, aimed at identifying situations where individual stressor effects are reduced or amplified when they act in combination. Here, we analysed variation in the family richness of stream macroinvertebrates in the groups Ephemeroptera, Plecoptera and Trichoptera (EPT) at 4658 sites spanning a 32° latitudinal range in eastern Australia in relation to two largely human-induced stressors, salinity and turbidity, and two environmental gradients, temperature and slope. The cumulative and interactive effect of salinity and turbidity on EPT family richness varied across the landscape and by habitat (edge or riffle) such that we observed additive, antagonistic and synergistic outcomes depending on the environmental context. Our findings highlight the importance of understanding the consistency of multiple stressor impacts, which will involve higher-order interactions between multiple stressors and environmental factors.


Assuntos
Efeitos Antropogênicos , Ecossistema , Animais , Humanos , Biodiversidade , Temperatura , Rios , Insetos , Monitoramento Ambiental , Invertebrados
6.
Ecol Evol ; 12(10): e9433, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36311402

RESUMO

The breakdown of allochthonous organic matter, is a central step in nutrient cycling in stream ecosystems. There is concern that increased temperatures from climate change will alter the breakdown rate of organic matter, with important consequences for the ecosystem functioning of alpine streams. This study investigated the rate of leaf litter breakdown and how temperature and other factors such as microbial and invertebrate activities influenced this over elevational and temporal gradients. Dried leaves of Snow Gum (Eucalyptus pauciflora) and cotton strips were deployed in coarse (6 mm), and fine (50 µm) mesh size bags along an 820 m elevation gradient. Loss of mass in leaf litter and cotton tensile strength per day (k per day), fungal biomass measured as ergosterol concentration, invertebrate colonization of leaf litter, and benthic organic matter (mass and composition) were determined. Both microbial and macroinvertebrate activities were equally important in leaf litter breakdown with the abundance of shredder invertebrate taxa. The overall leaf litter breakdown rate and loss of tensile strength in cotton strips (both k per day) were greater during warmer deployment periods and at lower elevations, with significant positive relationships between mean water temperature and leaf breakdown and loss of tensile strength rate, but no differences between sites, after accounting for the effects of temperature. Despite considerably lower amounts of benthic organic matter in streams above the tree line relative to those below, shredders were present in coarse mesh bags at all sites. Ergosterol concentration was greater on leaves in coarse mesh bags than in fine mesh bags, implying differences in the microbial communities. The importance of water temperatures on the rate of leaf litter breakdown suggests the potential effects of climate change-induced temperature increases on ecological processes in such streams.

7.
Glob Chang Biol ; 28(23): 6872-6888, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36177681

RESUMO

Global warming is increasing mean temperatures and altering temperature variability at multiple temporal scales. To better understand the consequences of changes in thermal variability for ectotherms it is necessary to consider thermal variation at different time scales (i.e., acute, diel, and annual) and the responses of organisms within and across generations. Thermodynamics constrain acute responses to temperature, but within these constraints and over longer time periods, organisms have the scope to adaptively acclimate or evolve. Yet, hypotheses and predictions about responses to future warming tend not to explicitly consider the temporal scale at which temperature varies. Here, focusing on multicellular ectothermic animals, we argue that consideration of multiple processes and constraints associated with various timescales is necessary to better understand how altered thermal variability because of climate change will affect ectotherms.


Assuntos
Mudança Climática , Aquecimento Global , Animais , Temperatura , Biologia
8.
Ecotoxicology ; 31(6): 967-975, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35701565

RESUMO

Concentrations of major ions in coal mine discharge waters and unconventional hydrocarbon produced waters derived from coal bed methane (CBM) production, are potentially harmful to freshwater ecosystems. Bicarbonate is a major constituent of produced waters from CBM and coal mining. However, little is known about the relative toxicity of differing ionic proportions, especially bicarbonate, found in these CBM waters. As all freshwater invertebrates tested are more acutely sensitive to sodium bicarbonate (NaHCO3) than sodium chloride (NaCl) or synthetic sea water, we tested the hypotheses that toxicity of CBM waters are driven by bicarbonate concentration, and waters containing a higher proportion of bicarbonate are more toxic to freshwater invertebrates than those with less bicarbonate. We compared the acute (96 h) lethal toxicity to six freshwater invertebrate species of NaHCO3 and two synthetic CBM waters, with ionic proportions representative of water from CBM wells across New South Wales (NSW) and Queensland (Qld), in Australia. The ranking of LC50 values expressed as total salinity was consistent with the hypotheses. However, when toxicity was expressed as bicarbonate concentration, the hypothesis that the toxicity of coal bed waters would be explained by bicarbonate concentration was not well supported, and other ionic components were either ameliorating or exacerbating the NaHCO3 toxicity. Our findings showed NaHCO3 was more toxic than NaCl and that the NaHCO3 proportion of synthetic CBM waters drives toxicity, however other ions are altering the toxicity of bicarbonate.


Assuntos
Bicarbonatos , Poluentes Químicos da Água , Animais , Carvão Mineral , Ecossistema , Água Doce , Invertebrados , Íons , Cloreto de Sódio , Poluentes Químicos da Água/toxicidade
9.
Arch Environ Contam Toxicol ; 82(2): 281-293, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35091822

RESUMO

Freshwater biota are at risk globally from increasing salinity, including increases from deicing salts in cold regions. A variety of metrics of toxicity are used when estimating the toxicity of substances and comparing the toxicity between substances. However, the implications of using different metrics are not widely appreciated. Using the mayfly Colobruscoides giganteus (Ephemeroptera: Colobruscoidea), we compare the toxicity of seven different salts where toxicity was estimated using two metrics: (1) the no-effect concentrations (NEC) and (2) the lethal concentrations for 10, 25 and 50% of the test populations (LCx). The LCx values were estimated using two different models, the classic log-logistic model and the newer toxicokinetic-toxicodynamic (TKTD) model. The NEC and both types of LCx values were estimated using Bayesian statistics. We also compared the toxicity of two salts (NaCl and CaCl2) for C. giganteus at water temperatures of 4 °C, 7 °C and 15 °C using the same metrics of toxicity. Our motivation for using a mayfly to assess salinity toxicity was because mayflies are generally salt sensitive, are ecologically important and are common in Australian (sub-)alpine streams. The temperature ranges were chosen to mimic winter, spring and summer water temperatures for Australian (sub-)alpine streams. Considering 144-h classical LCx values, we found toxicity differed between various salts, i.e., the lowest 144-h LC50 (8 mS/cm) for a salt used by a ski resort was half that of the highest 144-h LC50 from artificial marine salts and CaCl2 applied to roads (16 mS/cm). The analytical grade NaCl (as shown by 144-h LC50 value at 7 °C) was substantially more toxic (7.3 mS/cm) compared to analytical grade CaCl2 (12.5 mS/cm). Yet for NEC values, there were comparably fewer differences in toxicity between salts and none between the same salts at different temperatures. We conclude that LCx values are better suited to compare the difference in toxicity between substances or between the same substance at different test temperatures, while NEC values are better suited to estimating concentrations of substances that have no effect to the test species and endpoint measured under laboratory conditions.


Assuntos
Ephemeroptera , Poluentes Químicos da Água , Animais , Austrália , Teorema de Bayes , Salinidade , Sais , Temperatura , Poluentes Químicos da Água/toxicidade
10.
Arch Environ Contam Toxicol ; 82(2): 266-280, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33877368

RESUMO

The application of road de-icing salts has the potential to salinize fresh waters and degrade habitat for aquatic organisms. In the Australian Alps, the ecological effects of even small salinity increases from de-icing may be different than in North America and Europe because of (1) differences in the evolutionary history, and (2) areas with de-icing in Australia are not located in urbanized landscapes where de-icing has been largely studied elsewhere. In this study, we tried to determine the salinity increases attributable to de-icing in Australia and the effects of this increase in salinity to stream macroinvertebrates. We observed increased salt concentrations (as measured by continuous measurements of electrical conductivity (EC) and periodic measurements of chloride concentrations) in streams near two Australian ski resorts, during the snow seasons (June to September) of 2016 to 2018. The maximum EC observed in streams in salted sites near Perisher, New South Wales, was 390 µS cm-1 compared with a maximum of 26.5 µS cm-1 at unsalted sites. Lower EC values (i.e., maximum 61.1 µS cm-1) and short durations of salinity increases in streams near Falls Creek, Victoria, were not expected to cause an adverse biological response. Salt storage in the landscape was evident at salted sites near Perisher where EC was above background levels during periods of the year when no salt was applied to roads. Stream macroinvertebrate community composition differed at sites receiving run-off from road salting activities near Perisher. Abundances of Oligochaeta (worms) (up to 11-fold), Dugesiidae (flat worms) (up to fourfold), and Aphroteniinae (chironomids) (up to 14-fold) increased, whereas Leptophlebiidae (mayflies) decreased by up to 100% compared with non-salted sites. The taxa that were less abundant where de-icing salts were present tended to be the same taxa that toxicity testing revealed to be relatively salt sensitive species. This study demonstrates a causal link between de-icing salts, elevated stream salinity, and altered macroinvertebrate community composition in streams that received run-off from road de-icing activity in the Australian Alps.


Assuntos
Ephemeroptera , Sais , Animais , Austrália , Rios , Qualidade da Água
12.
Environ Pollut ; 291: 118092, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34520947

RESUMO

Environmental degradation of rivers in agricultural landscapes is typically caused by multiple co-occurring stressors, but how interactions among stressors affect freshwater ecosystems is poorly understood. Therefore, we investigated the sensitivity and specificity of several measures of benthic macroinvertebrate community response to the individual and combined effects of the pesticide sulfoxaflor (SFX), increased sand sedimentation and elevated nutrients using outdoor recirculating mesocosms. Among the single stressor treatments, nutrients had no observable impact and sand only affected one community response measure compared to controls. High SFX levels had the largest effects on benthic macroinvertebrate communities, negatively affecting six of seven macroinvertebrate response measures. Sulfoxaflor had similar adverse effects on biota when in combination with sand and nutrients in the multi-stressor treatment, suggesting that generally SFX has overwhelming and pervasive effects irrespective of the presence of the other stressors. In contrast to SFX, elevated nutrients had no detectable effect on macroinvertebrate communities, likely as a consequence of nutrients being rapidly taken up by bacteria rather than by benthic algae. Elevated sand sedimentation increased the negative effects of SFX on sediment sensitive taxa, but generally had limited biological effects. This was despite the levels of sedimentation in our treatments being at concentrations that have caused large impacts in other studies. This research points to direct and rapid toxic effects of SFX on stream macroinvertebrates, contrasting with effects of the other stressors. This study emphasises that pesticide effects could be misattributed to other common freshwater stressors, potentially focussing restoration actions on a stressor of lesser importance.


Assuntos
Ecossistema , Invertebrados , Agricultura , Animais , Monitoramento Ambiental , Sedimentos Geológicos , Rios
13.
Sci Total Environ ; 763: 142997, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33250249

RESUMO

Pesticides are increasingly recognised as a threat to freshwater biodiversity, but their specific ecological effects remain difficult to distinguish from those of co-occurring stressors and environmental gradients. Using mesocosms we examined the effects of an organophosphate insecticide (malathion) on stream macroinvertebrate communities concurrently exposed to a suite of stressors typical of streams in agricultural catchments. We assessed the specificity of the SPEcies At Risk index designed to determine pesticide effects in mesocosm trials (SPEARmesocosm). This index determines the log abundance proportion of taxa that are considered physiologically sensitive to pesticides. Geographic variation in pesticide sensitivity within taxa, coupled with variation between pesticides and the effects of co-occurring stressors may decrease the accuracy of SPEARmesocosm. To examine this, we used local pesticide sensitivity assessments based on rapid toxicity tests to develop two new SPEAR versions to compare to the original SPEARmesocosms index using mesocosm results. We further compared these results to multivariate analyses and community indices (e.g. richness, abundance, Simpson's diversity) commonly used to assess stressor effects on biota. To assess the implications of misclassifying species sensitivity on SPEAR indices we used a series of simulations using artificial data. The impacts of malathion were detectable using SPEARmesocosm, and one of two new SPEAR indices. All three of the SPEAR indices also increased when exposed to other agricultural non-pesticide stressors, and this change increased with greater pesticide concentrations. Our results support that interactions between other non-pesticide stressors with pesticides can affect SPEAR performance. Multivariate analysis and the other indices used here identified a significant effect of malathion especially at high concentrations, with little or no evidence of effects from the other agricultural stressors.


Assuntos
Praguicidas , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Invertebrados , Praguicidas/análise , Praguicidas/toxicidade , Rios , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
14.
Curr Opin Insect Sci ; 41: 46-53, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32682316

RESUMO

Assemblages of aquatic insects are structured by multiple biotic and abiotic conditions, including temperature, salinity and oxygen. Here we highlight recent developments in our understanding of how high temperatures, elevated salinities and low oxygen levels affect physiological processes, responses at the organismal level, and impacts on species interaction and community assembly. As aquatic insects may be exposed to multiple stressors, we review their sensitivity to interactive effects of multiple stressors. While each of these stressors may operate via different physiological mechanisms, they all influence the overall energy budget as well as the allocation of energy to competing functions such as homeostatic maintenance, growth, development and reproduction. As such, there is potential for interaction whereby one stressor may exacerbate the effect of another stressor. Integrating research on these stressors can provide a powerful approach for delineating the sensitivity of aquatic insects to multiple stressors and developing sound management practices.


Assuntos
Insetos/fisiologia , Salinidade , Temperatura , Água/química , Animais , Organismos Aquáticos/fisiologia , Oxigênio/análise , Estresse Fisiológico
15.
Sci Rep ; 9(1): 16591, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31719585

RESUMO

Few taxa exhibit the variability of sex-determining modes as amphibians. However, due to the presence of homomorphic sex chromosomes in many species, this phenomenon has been difficult to study. The Australian frog, Litoria aurea, has been relatively well studied over the past 20 years due to widespread declines largely attributable to chytrid fungus. However, it has been subject to few molecular studies and its mode of sex determination remained unknown. We applied DArTseq™ to develop sex-linked single nucleotide polymorphisms (SNPs) and restriction fragment presence/absence (PA) markers in 44 phenotypically sexed L. aurea individuals from the Molonglo River in NSW, Australia. We conclusively identified a male heterogametic (XX-XY) sex determination mode in this species, identifying 11 perfectly sex-linked SNP and six strongly sex-linked PA markers. We identified a further 47 moderately sex-linked SNP loci, likely serving as evidence indicative of XY recombination. Furthermore, within these 47 loci, a group of nine males were found to have a feminised Y chromosome that significantly differed to all other males. We postulate ancestral sex-reversal as a means for the evolution of this now pseudoautosomal region on the Y chromosome. Our findings present new evidence for the 'fountain of youth' hypothesis for the retention of homomorphic sex chromosomes in amphibians and describe a novel approach for the study of sex chromosome evolution in amphibia.


Assuntos
Anuros/genética , Evolução Molecular , Marcadores Genéticos , Cromossomos Sexuais/genética , Análise para Determinação do Sexo/métodos , Processos de Determinação Sexual , Animais , Feminino , Genótipo , Masculino
16.
Environ Toxicol Chem ; 38(7): 1560-1568, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30900771

RESUMO

There are limited data on the sensitivity to contaminants of marine organisms in polar regions. Consequently, assessments of the risk of contaminants to marine biota in polar environments typically include extrapolations from temperate and/or tropical species. This is problematic because the taxonomic composition of organisms differs between polar and temperate/tropical waters, and both the toxicity of chemicals and the physiology of organisms are very different at the stable low temperatures experienced in polar marine systems. Collecting high-quality sensitivity data for a wide range of marine polar organisms using traditional toxicity assessment approaches is a time-consuming and difficult process, especially in remote and hostile environments. We applied a rapid toxicity testing approach, which allowed a much larger number of species to be tested than would be possible with traditional toxicity test methods, albeit with lower replications and fewer exposure concentrations. With this rapid approach, sensitivity estimates are less precise, but more numerous. This is important when constructing species sensitivity distributions (SSDs), which aim to represent the sensitivity of communities. We determined the approximate sensitivity (4- and 10-d median lethal concentration [LC50] values) of a large and representative sample of Antarctic marine invertebrates to copper (Cu), zinc (Zn), and cadmium (Cd). Up to 88 LC50 values (from 88 different taxa) were used in the construction of SSDs. The hazardous concentrations for 1% of taxa (HC1) based on 10-d LC50 values were 37, 346, and 792 µg/L for Cu, Zn, and Cd, respectively. Our results provide a basis for estimating the risk of exposure to metals for a large representative sample of marine polar invertebrates. Environ Toxicol Chem 2019;38:1560-1568. © 2019 SETAC.


Assuntos
Invertebrados/efeitos dos fármacos , Metais/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Regiões Antárticas , Cádmio/toxicidade , Cobre/toxicidade , Invertebrados/fisiologia , Dose Letal Mediana , Metais/química , Especificidade da Espécie , Testes de Toxicidade/métodos , Poluentes Químicos da Água/química , Zinco/toxicidade
17.
Artigo em Inglês | MEDLINE | ID: mdl-30509905

RESUMO

Coal mining and extraction of methane from coal beds generate effluent with elevated salinity or major ion concentrations. If discharged to freshwater systems, these effluents may have adverse environmental effects. There is a growing body of work on freshwater invertebrates that indicates variation in the proportion of major ions can be more important than salinity when determining toxicity. However, it is not known if saline toxicity in a subset of species is representative of toxicity across all freshwater invertebrates. If patterns derived from a subset of species are representative of all freshwater invertebrates, then we would expect a correlation in the relative sensitivity of these species to multiple saline waters. Here, we determine if there is a correlation between the acute (96 h) lethal toxicity in freshwater invertebrates to synthetic marine salts (SMS) and sodium bicarbonate (NaHCO3) added to dechlorinated Sydney tap water. NaHCO3 is a major component of many coal bed effluents. However, most salinization in Australia exhibits ionic composition similar to seawater, which has very little HCO3- Across all eight species tested, NaHCO3 was 2-50 times more toxic than SMS. We also observed strong correlations in the acute toxicity of seven of the tested species to SMS and NaHCO3 The strongest relationship (LC50 r2 = 0.906) was dependent on the exclusion of one species, Paratya australiensis (Decopoda: Atyidae), which was the most sensitive species tested to NaHCO3, but the second-most tolerant of SMS. We conclude that differences in the toxicity of different proportions of major ions can be similar across a wide range of species. Therefore, a small subset of the invertebrate community can be representative of the whole. However, there are some species, which based on the species tested in the current study appear to be a minority, that respond differently to saline effluent and need to be considered separately. We discuss the implications of this study for the management of saline coal bed waters.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.


Assuntos
Invertebrados/efeitos dos fármacos , Sais/toxicidade , Bicarbonato de Sódio/toxicidade , Animais , Água Doce , Águas Salinas/efeitos adversos , Testes de Toxicidade Aguda
18.
Artigo em Inglês | MEDLINE | ID: mdl-30509920

RESUMO

The salinity of many freshwaters is increasing globally as a result of human activities. Associated with this increase in salinity are losses of Ephemeroptera (mayfly) abundance and richness. The salinity concentrations at which Ephemeroptera decline in nature are lower than their internal salinity or haemolymph osmolality. Many species also suffer substantial mortality in single species laboratory toxicity tests at salinities lower than their internal salinity. These findings are problematic as conventional osmoregulation theory suggests that freshwater animals should not experience stress where external osmolality is greater than haemolymph osmolality. Here I explore three hypotheses to explain salt sensitivity in Ephemeroptera. These conceptual hypotheses are based on the observations that as the external sodium ion (Na+) concentration increases so does the Na+ turnover rate (both uptake and elimination rates increase). Sulphate ([Formula: see text]) uptake in mayflies also increases with increasing external [Formula: see text] although, unlike Na+, its rate of increase decreases with increasing external [Formula: see text] The first hypothesis is premised on ion turnover being energetically costly. The first hypothesis proposes that individuals must devote a greater proportion of their energy to ion homeostasis at the expense of other uses including growth and development. Lethal levels of salinity presumably result from individuals not being able to devote enough energy to maintain ion homeostasis without critical loss of other vital functions. The second hypothesis is premised on the uptake of Na+ exchanged for (an outgoing) H+, leading to (localized) loss of pH regulation. The third hypothesis is premised on localized Na+ toxicity or poisoning with increased Na turnover as salinity increases. None of the proposed hypotheses is without potential problems, yet all are testable, and research effort should be focused at attempting to falsify them.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.


Assuntos
Ephemeroptera/fisiologia , Transporte de Íons/fisiologia , Osmorregulação/fisiologia , Salinidade , Sódio/metabolismo , Sulfatos/metabolismo , Animais , Água Doce/química
19.
Sci Rep ; 8(1): 17021, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30451978

RESUMO

Determining whether the structural and functional stress responses of communities are similar across space and time is paramount for forecasting and extrapolating the consequences of anthropogenic pressures on ecosystems and their services. Stream ecosystems are under high anthropogenic pressure; however, studies have only examined the response of stream communities across large scales over multiple generations. We studied the responses of leaf-associated microbial communities in streams within three European biogeographical regions to chemical stress in a microcosm experiment with multiple cycles of fungicide pollution and resource colonisation. Fungal community composition and the ecosystem function leaf decomposition were measured as response variables. Microbial leaf decomposition showed similar recovery times under environmental levels of fungicide exposure across regions. Initially, the decomposition declined (between 19 and 53%) under fungicide stress and recovered to control levels during the third cycle of pollution and colonisation. Although community composition and its stress response varied between regions, this suggests similar functional community adaptation towards fungicide stress over time. Genetic, epigenetic and physiological adaptations, as well as species turnover, may have contributed to community adaptation but further studies are required to determine if and to which extent these mechanisms are operating. Overall, our findings provide the first evidence of a similar functional response of microbial leaf decomposition to chemical stress across space and time.


Assuntos
Fungicidas Industriais/toxicidade , Microbiota/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Biomassa , Ecossistema , Geografia , Folhas de Planta/microbiologia , Rios/química
20.
Nature ; 555(7698): 587, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29595780
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...