Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 19(2): 392-406, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38317495

RESUMO

Heat shock protein 70 (Hsp70) isoforms are key players in the regulation of protein homeostasis and cell death pathways and are therefore attractive targets in cancer research. Developing nucleotide-competitive inhibitors or allosteric modulators, however, has turned out to be very challenging for this protein family, and no Hsp70-directed therapeutics have so far become available. As the field could profit from alternative starting points for inhibitor development, we present the results of a fragment-based screening approach on a two-domain Hsp70 construct using in-solution NMR methods, together with X-ray-crystallographic investigations and mixed-solvent molecular dynamics simulations. The screening protocol resulted in hits on both domains. In particular, fragment binding in a deeply buried pocket at the substrate-binding domain could be detected. The corresponding site is known to be important for communication between the nucleotide-binding and substrate-binding domains of Hsp70 proteins. The main fragment identified at this position also offers an interesting starting point for the development of a dual Hsp70/Hsp90 inhibitor.


Assuntos
Proteínas de Choque Térmico HSP70 , Simulação de Dinâmica Molecular , Proteínas de Choque Térmico HSP70/metabolismo , Domínios Proteicos , Espectroscopia de Ressonância Magnética , Nucleotídeos/metabolismo , Ligação Proteica , Proteínas de Choque Térmico HSP90/metabolismo
2.
ACS Biomater Sci Eng ; 10(1): 51-74, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37466304

RESUMO

The covalent modification of proteins with polymers is a well-established method for improving the pharmacokinetic properties of therapeutically valuable biologics. The conjugated polymer chains of the resulting hybrid represent highly flexible macromolecular structures. As the dynamics of such systems remain rather elusive for established experimental techniques from the field of protein structure elucidation, molecular dynamics simulations have proven as a valuable tool for studying such conjugates at an atomistic level, thereby complementing experimental studies. With a focus on new developments, this review aims to provide researchers from the polymer bioconjugation field with a concise and up to date overview of such approaches. After introducing basic principles of molecular dynamics simulations, as well as methods for and potential pitfalls in modeling bioconjugates, the review illustrates how these computational techniques have contributed to the understanding of bioconjugates and bioconjugation strategies in the recent past and how they may lead to a more rational design of novel bioconjugates in the future.


Assuntos
Simulação de Dinâmica Molecular , Polímeros , Polímeros/química , Proteínas/química , Proteínas/metabolismo , Estrutura Molecular
3.
Small ; 19(44): e2303066, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37403298

RESUMO

Amphiphilic ABA-triblock copolymers, comprised of poly(2-oxazoline) and poly(2-oxazine), can solubilize poorly water-soluble molecules in a structure-dependent manner forming micelles with exceptionally high drug loading. All-atom molecular dynamics simulations are conducted on previously experimentally characterized, curcumin-loaded micelles to dissect the structure-property relationships. Polymer-drug interactions for different levels of drug loading and variation in polymer structures of both the inner hydrophobic core and outer hydrophilic shell are investigated. In silico, the system with the highest experimental loading capacity shows the highest number of drug molecules encapsulated by the core. Furthermore, in systems with lower loading capacity outer A blocks show a greater extent of entanglement with the inner B blocks. Hydrogen bond analyses corroborate previous hypotheses: poly(2-butyl-2-oxazoline) B blocks, found experimentally to have reduced loading capacity for curcumin compared to poly(2-propyl-2-oxazine), establish fewer but longer-lasting hydrogen bonds. This possibly results from different sidechain conformations around the hydrophobic cargo, which is investigated by unsupervised machine learning to cluster monomers in smaller model systems mimicking different micelle compartments. Exchanging poly(2-methyl-2-oxazoline) with poly(2-ethyl-2-oxazoline) leads to increased drug interactions and reduced corona hydration; this suggests an impairment of micelle solubility or colloidal stability. These observations can help driving forward a more rational a priori nanoformulation design.


Assuntos
Curcumina , Curcumina/química , Micelas , Portadores de Fármacos/química , Polímeros/química , Oxazinas , Interações Hidrofóbicas e Hidrofílicas
4.
ACS Nano ; 17(7): 6932-6942, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36972400

RESUMO

Polymer self-assembly leading to cooling-induced hydrogel formation is relatively rare for synthetic polymers and typically relies on H-bonding between repeat units. Here, we describe a non-H-bonding mechanism for a cooling-induced reversible order-order (sphere-to-worm) transition and related thermogelation of solutions of polymer self-assemblies. A multitude of complementary analytical tools allowed us to reveal that a significant fraction of the hydrophobic and hydrophilic repeat units of the underlying block copolymer is in close proximity in the gel state. This unusual interaction between hydrophilic and hydrophobic blocks reduces the mobility of the hydrophilic block significantly by condensing the hydrophilic block onto the hydrophobic micelle core, thereby affecting the micelle packing parameter. This triggers the order-order transition from well-defined spherical micelles to long worm-like micelles, which ultimately results in the inverse thermogelation. Molecular dynamics modeling indicates that this unexpected condensation of the hydrophilic corona onto the hydrophobic core is due to particular interactions between amide groups in the hydrophilic repeat units and phenyl rings in the hydrophobic ones. Consequently, changes in the structure of the hydrophilic blocks affecting the strength of the interaction could be used to control macromolecular self-assembly, thus allowing for the tuning of gel characteristics such as strength, persistence, and gelation kinetics. We believe that this mechanism might be a relevant interaction pattern for other polymeric materials as well as their interaction in and with biological environments. For example, controlling the gel characteristics could be considered important for applications in drug delivery or biofabrication.

5.
Mol Pharm ; 19(8): 2868-2876, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35776440

RESUMO

Predicting biopharmaceutical characteristics and food effects for drug substances may substantially leverage rational formulation outcomes. We established a bile and lipid interaction prediction model for new drug substances and further explored the model for the prediction of bile-related food effects. One hundred and forty-one drugs were categorized as bile and/or lipid interacting and noninteracting drugs using 1H nuclear magnetic resonance (NMR) spectroscopy. Quantitative structure-property relationship modeling with molecular descriptors was applied to predict a drug's interaction with bile and/or lipids. Bile interaction, for example, was indicated by two descriptors characterizing polarity and lipophilicity with a high balanced accuracy of 0.8. Furthermore, the predicted bile interaction correlated with a positive food effect. Reliable prediction of drug substance interaction with lipids required four molecular descriptors with a balanced accuracy of 0.7. These described a drug's shape, lipophilicity, aromaticity, and hydrogen bond acceptor capability. In conclusion, reliable models might be found through drug libraries characterized for bile interaction by NMR. Furthermore, there is potential for predicting bile-related positive food effects.


Assuntos
Bile , Relação Quantitativa Estrutura-Atividade , Interações Medicamentosas , Ligação de Hidrogênio , Lipídeos
6.
Commun Chem ; 5(1): 169, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36697690

RESUMO

Biosensor techniques have become increasingly important for fragment-based drug discovery during the last years. The AAA+ ATPase p97 is an essential protein with key roles in protein homeostasis and a possible target for cancer chemotherapy. Currently available p97 inhibitors address its ATPase activity and globally impair p97-mediated processes. In contrast, inhibition of cofactor binding to the N-domain by a protein-protein-interaction inhibitor would enable the selective targeting of specific p97 functions. Here, we describe a biolayer interferometry-based fragment screen targeting the N-domain of p97 and demonstrate that a region known as SHP-motif binding site can be targeted with small molecules. Guided by molecular dynamics simulations, the binding sites of selected screening hits were postulated and experimentally validated using protein- and ligand-based NMR techniques, as well as X-ray crystallography, ultimately resulting in the first structure of a small molecule in complex with the N-domain of p97. The identified fragments provide insights into how this region could be targeted and present first chemical starting points for the development of a protein-protein interaction inhibitor preventing the binding of selected cofactors to p97.

7.
Biomacromolecules ; 22(11): 4521-4534, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34643378

RESUMO

Conjugation of biologics with polymers modulates their pharmacokinetics, with polyethylene glycol (PEG) as the gold standard. We compared alternative polymers and two types of cyclooctyne linkers (BCN/DBCO) for bioconjugation of interferon-α2a (IFN-α2a) using 10 kDa polymers including linear mPEG, poly(2-ethyl-2-oxazoline) (PEtOx), and linear polyglycerol (LPG). IFN-α2a was azide functionalized via amber codon expansion and bioorthogonally conjugated to all cyclooctyne linked polymers. Polymer conjugation did not impact IFN-α2a's secondary structure and only marginally reduced IFN-α2a's bioactivity. In comparison to PEtOx, the LPG polymer attached via the less rigid cyclooctyne linker BCN was found to stabilize IFN-α2a against thermal stress. These findings were further detailed by molecular modeling studies which showed a modulation of protein flexibility upon PEtOx conjugation and a reduced amount of protein native contacts as compared to PEG and LPG originated bioconjugates. Polymer interactions with IFN-α2a were further assessed via a limited proteolysis (LIP) assay, which resulted in comparable proteolytic cleavage patterns suggesting weak interactions with the protein's surface. In conclusion, both PEtOx and LPG bioconjugates resulted in a similar biological outcome and may become promising PEG alternatives for bioconjugation.


Assuntos
Polietilenoglicóis , Polímeros , Glicerol , Interferon alfa-2 , Proteínas Recombinantes/genética
8.
ACS Infect Dis ; 7(4): 746-758, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33710875

RESUMO

The enoyl-acyl carrier protein (ACP) reductase (ENR) is a key enzyme within the bacterial fatty-acid synthesis pathway. It has been demonstrated that small-molecule inhibitors carrying the diphenylether (DPE) scaffold bear a great potential for the development of highly specific and effective drugs against this enzyme class. Interestingly, different substitution patterns of the DPE scaffold have been shown to lead to varying effects on the kinetic and thermodynamic behavior toward ENRs from different organisms. Here, we investigated the effect of a 4'-pyridone substituent in the context of the slow tight-binding inhibitor SKTS1 on the inhibition of the Staphylococcus aureus enoyl-ACP-reductase saFabI and the closely related isoenzyme from Mycobacterium tuberculosis, InhA, and explored a new interaction site of DPE inhibitors within the substrate-binding pocket. Using high-resolution crystal structures of both complexes in combination with molecular dynamics (MD) simulations, kinetic measurements, and quantum mechanical (QM) calculations, we provide evidence that the 4'-pyridone substituent adopts different tautomeric forms when bound to the two ENRs. We furthermore elucidate the structural determinants leading to significant differences in the residence time of SKTS1 on both enzymes.


Assuntos
Inibidores Enzimáticos/farmacologia , Isoenzimas , Oxirredutases/antagonistas & inibidores , Isomerismo , Mycobacterium tuberculosis/enzimologia , Staphylococcus aureus/enzimologia
9.
Mol Pharm ; 17(12): 4704-4708, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33118829

RESUMO

Controlling physicochemical properties of light-unresponsive drugs, by light, prima facie, a paradox approach. We expanded light control by ion pairing light-unresponsive salicylate or ibuprofen to photoswitchable azobenzene counterions, thereby reversibly controlling supramolecular structures, hence the drugs' physicochemical and kinetic properties. The resulting ion pairs photoliquefied into room-temperature ionic liquids under ultraviolet light. Aqueous solutions showed trans-cis-dependent supramolecular structures under a light with wormlike aggregates decomposing into small micelles and vice versa. Light control allowed for permeation through membranes of cis-ibuprofen ion pairs within 12 h in contrast to the trans ion pairs requiring 72 h. In conclusion, azobenzene ion-pairing expands light control of physicochemical and kinetic properties to otherwise light-unresponsive drugs.


Assuntos
Líquidos Iônicos/efeitos da radiação , Raios Ultravioleta , Compostos Azo/química , Compostos Azo/farmacocinética , Compostos Azo/efeitos da radiação , Química Farmacêutica , Ibuprofeno/química , Ibuprofeno/farmacocinética , Ibuprofeno/efeitos da radiação , Líquidos Iônicos/química , Líquidos Iônicos/farmacocinética , Estrutura Molecular , Permeabilidade , Salicilatos/química , Salicilatos/farmacocinética , Salicilatos/efeitos da radiação , Água/química
10.
J Med Chem ; 63(5): 2095-2113, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31423787

RESUMO

A model system of two related enzymes with conserved binding sites, namely N-myristoyltransferase from two different organisms, was studied to decipher the driving forces that lead to selective inhibition in such cases. Using a combination of computational and experimental tools, two different selectivity-determining features were identified. For some ligands, a change in side-chain flexibility appears to be responsible for selective inhibition. Remarkably, this was observed for residues orienting their side chains away from the ligands. For other ligands, selectivity is caused by interfering with a water molecule that binds more strongly to the off-target than to the target. On the basis of this finding, a virtual screen for selective compounds was conducted, resulting in three hit compounds with the desired selectivity profile. This study delivers a guideline on how to assess selectivity-determining features in proteins with conserved binding sites and to translate this knowledge into the design of selective inhibitors.


Assuntos
Aciltransferases/antagonistas & inibidores , Aciltransferases/metabolismo , Desenho de Fármacos , Leishmania major/metabolismo , Modelos Moleculares , Aciltransferases/química , Sítios de Ligação/fisiologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Leishmania major/enzimologia , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...