Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Infect Dis ; 78(2): 352-355, 2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-37596935

RESUMO

Resistance of SARS-CoV-2 to antivirals was shown to develop in immunocompromised individuals receiving remdesivir. We describe an immunocompromised patient who was treated with repeated and prolonged courses of nirmatrelvir and developed de-novo E166V/L50F mutations in the Mpro region. These mutations were associated with clinical and virological treatment failure.


Assuntos
Hospedeiro Imunocomprometido , Ritonavir , Humanos , Ritonavir/uso terapêutico , Mutação , SARS-CoV-2/genética , Antivirais/uso terapêutico
2.
J Thromb Thrombolysis ; 56(4): 538-547, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37736784

RESUMO

COVID-19 disease is associated with an increased risk of thrombotic complications, which contribute to high short-term mortality. Patients with COVID-19 demonstrate enhanced platelet turnover and reactivity, which may have a role in the development of thrombotic events and disease severity. Evidence has suggested direct interaction between SARS-CoV-2 and platelets, resulting in platelets activation. Here, we compare the effect of various SARS-CoV-2 spike variants on platelet activation. Engineered lentiviral particles were pseudotyped with spike SARS-CoV-2 variants and incubated with Platelet Rich Plasma obtained from healthy individuals. The pseudotyped SARS-CoV-2 exhibiting the wild-type Wuhan-Hu spike protein stimulated platelets to increase expression of the surface CD62P and activated αIIbß3 markers by 3.5 ± 1.2 and 3.3 ± 0.7 fold, respectively (P = 0.004 and 0.003). The Delta variant induced much higher levels of platelet activation; CD62P expression was increased by 6.6 ± 2.2 fold and activated αIIbß3 expression was increased by 5.0 ± 1.5 fold (P = 0.005 and 0.026, respectively). The Omicron BA.1 and the Alpha variants induced the lowest level of activation; CD62P expression was increased by 1.7 ± 0.4 and 1.6 ± 0.9 fold, respectively (P = 0.003 and 0.008), and activated αIIbß3 expression by 1.8 ± 1.1 and 1.6 ± 0.8, respectively (P = 0.003 and 0.001). The Omicron BA.2 variant induced an increase of platelets activation comparable to the Wuhan-Hu (2.8 ± 1.2 and 2.1 ± 1.3 fold for CD62P and activated αIIbß3 markers, respectively). The results obtained for various COVID-19 variants are in correlation with the clinical severity and mortality reported for these variants.

3.
Front Plant Sci ; 11: 585515, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072155

RESUMO

Transposable elements (TEs) are major contributors to genome plasticity and thus are likely to have a dramatic impact on genetic diversity and speciation. Recent technological developments facilitated the sequencing and assembly of the wheat genome, opening the gate for whole genome analysis of TEs in wheat, which occupy over 80% of the genome. Questions that have been long unanswered regarding TE dynamics throughout the evolution of wheat, are now being addressed more easily, while new questions are rising. In this review, we discuss recent advances in the field of TE dynamics in wheat and possible future directions.

4.
Front Plant Sci ; 11: 1173, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903772

RESUMO

The discovery of Mariam, a wheat-unique miniature transposable element family, was reported in our previous study. We have also shown the possible impact of Mariam insertions on the expression of wheat genes. However, the evolutionary dynamics of Mariam was not studied in detail. In this study, we have assessed the insertion sites of Mariam family in different wheat species. In-silico analysis of Mariam insertions has allowed the discovery of two different sequence versions of Mariam, and that Mariam might have been recently active in wild emmer wheat genome (T. turgidum ssp diccocoides). In addition, the analysis of Mariam insertional polymorphism has facilitated the discovery of large genomic rearrangement events, such as deletions and introgressions in the wheat genome. The dynamics of Mariam family sheds light on the evolution of wheat.

5.
PLoS One ; 15(4): e0231323, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32287287

RESUMO

Following allopolyploidization, nascent polyploid wheat species react with massive genomic rearrangements, including deletion of transposable element-containing sequences. While such massive rearrangements are considered to be a prominent process in wheat genome evolution and speciation, their structure, extent, and underlying mechanisms remain poorly understood. In this study, we retrieved ~3500 insertions of a specific variant of Fatima, one of the most dynamic gypsy long-terminal repeat retrotransposons in wheat from the recently available high-quality genome drafts of Triticum aestivum (bread wheat) and Triticum turgidum ssp. dicoccoides or wild emmer, the allotetraploid mother of all modern wheats. The dynamic nature of Fatima facilitated the identification of large (i.e., up to ~ 1 million bases) Fatima-containing insertions/deletions (indels) upon comparison of bread wheat and wild emmer genomes. We characterized 11 such indels using computer-assisted analysis followed by PCR validation, and found that they might have occurred via unequal intra-strand recombination or double-strand break (DSB) events. Additionally, we observed one case of introgression of novel DNA fragments from an unknown source into the wheat genome. Our data thus indicate that massive large-scale DNA rearrangements might play a prominent role in wheat speciation.


Assuntos
Evolução Molecular , Rearranjo Gênico , Genoma de Planta , Triticum/genética , Quebras de DNA de Cadeia Dupla , Variações do Número de Cópias de DNA , Deleção de Genes , Mutagênese Insercional , Recombinação Genética , Retroelementos/genética
6.
BMC Plant Biol ; 19(1): 461, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31675912

RESUMO

BACKGROUND: Transposable elements (TEs) comprise over 80% of the wheat genome and usually possess unique features for specific super-families and families. However, the role of TEs in wheat evolution and reshaping the wheat genome remains largely unclear. RESULTS: In this study, we discovered a miniature (307 bp in length) TE-like sequence in exon 6 of a gene that encodes for 5-formyltetrahydrofolate, in two accessions of wild emmer wheat (T. turgidum ssp. dicoccoides) and has interfered with the gene translation by creating a shorter reading frame as a result of a stop codon. The sequence that was termed Mariam, does not show any structural similarity to known TEs. It does not possess terminal inverted repeats (TIRs) that would allow us to assign this element to one of the TIR DNA super-families, and it does not possess characteristic features of SINE, such as a Pol-III promotor or a poly-A tail. In-silico analysis of five publicly available genome drafts of Triticum and Aegilops species revealed that Mariam element appears in a very low copy number (1-3 insertions) in diploid wheat species and ~ 12 insertions in tetraploid and hexaploidy wheat species. In addition, Mariam element was found to be unique to wheat, as it was not found in other plant genomes. The dynamic nature of Mariam in the wheat genome was assessed by site-specific PCR analysis and revealed that it retained activity in wild emmer populations in a population-specific manner. CONCLUSIONS: This study provides additional insight into the evolutionary impact of TEs in wheat.


Assuntos
Elementos de DNA Transponíveis , DNA de Plantas , Leucovorina/genética , Triticum/genética , Sequência de Bases , Leucovorina/metabolismo , Fases de Leitura Aberta , Alinhamento de Sequência
7.
Mol Genet Genomic Med ; 7(10): e00946, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31453660

RESUMO

BACKGROUND: The prevalence and the role of AGG interruptions within the FMR1 gene in the normal population is unknown. In this study, we investigated the frequent of AGG loss, in one or two alleles within the normal population. The role of AGG in the FMR1 stability has been assessed by correlating AGG loss to the prevalence of premutation/full mutation in two ethnic groups differing in their consanguinity rate: high versus low consanguinity rate (HCR vs. LCR). METHODS: The CGG repeat allele size and AGG presence were measured in 6,865 and 6,204 females belonging to the LCR (5%) and HCR (>45%) groups, respectively, by Tripled-Primed-PCR technique. RESULTS: A lower prevalence of the premutation was observed in the HCR (1:158) as compared to the LCR group (1:128). No full mutation was found in the HCR females while in the LCR group the prevalence found was 1:1,149. Homozygosity rate was higher in the HCR population compared to the LCR group.The overall AGG loss was higher in the HCR population than in the LCR and increased with increased CGG repeat number in both ethnic groups. CONCLUSIONS: Although we observed a significantly higher rate of homozygosity and AGG loss in the HCR group, this did not affect the prevalence of the premutation and full mutation in this population. Their prevalence was significantly lower than in the LCR population. Finally, we discuss whether the loss of AGG could be also a polymorphic event but not only a stabilizing factor.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Repetições de Trinucleotídeos/genética , Consanguinidade , Etnicidade/genética , Feminino , Haplótipos , Homozigoto , Humanos , Israel , Masculino , Mosaicismo , Mutação
8.
PLoS One ; 13(10): e0204972, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30356268

RESUMO

The sequence drafts of wild emmer and bread wheat facilitated high resolution, genome-wide analysis of transposable elements (TEs), which account for up to 90% of the wheat genome. Despite extensive studies, the role of TEs in reshaping nascent polyploid genomes remains to be fully understood. In this study, we retrieved miniature inverted-repeat transposable elements (MITEs) from the recently published genome drafts of Triticum aestivum, Triticum turgidum ssp. dicoccoides, Aegilops tauschii and the available genome draft of Triticum urartu. Overall, 239,126 MITE insertions were retrieved, including 3,874 insertions of a newly identified, wheat-unique MITE family that we named "Inbar". The Stowaway superfamily accounts for ~80% of the retrieved MITE insertions, while Thalos is the most abundant family. MITE insertions are distributed in the seven homologous chromosomes of the wild emmer and bread wheat genomes. The remarkably high level of insertions in the B sub-genome (~59% of total retrieved MITE insertions in the wild emmer genome draft, and ~41% in the bread wheat genome draft), emphasize its highly repetitive nature. Nearly 52% of all MITE insertions were found within or close (less than 100bp) to coding genes, and ~400 MITE sequences were found in the bread wheat transcriptome, indicating that MITEs might have a strong impact on wheat genome expression. In addition, ~40% of MITE insertions were found within TE sequences, and remarkably, ~90% of Inbar insertions were located in retrotransposon sequences. Our data thus shed new light on the role of MITEs in the diversification of allopolyploid wheat species.


Assuntos
Aegilops/genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Retroelementos/genética , Triticum/genética , DNA de Plantas/isolamento & purificação , DNA de Plantas/metabolismo , Diploide , Evolução Molecular , Poliploidia , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...