Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Histochem Cell Biol ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724854

RESUMO

The spatial arrangement of the genome within the nucleus is a pivotal aspect of cellular organization and function with implications for gene expression and regulation. While all genome organization features, such as loops, domains, and radial positioning, are nonrandom, they are characterized by a high degree of single-cell variability. Imaging approaches are ideally suited to visualize, measure, and study single-cell heterogeneity in genome organization. Here, we describe two methods for the detection of DNA and RNA of individual gene alleles by fluorescence in situ hybridization (FISH) in a high-throughput format. We have optimized combined DNA/RNA FISH approaches either using simultaneous or sequential detection of DNA and nascent RNA. These optimized DNA and RNA FISH protocols were implemented in a 384-well plate format alongside automated image and data analysis and enable accurate detection of individual gene alleles and their gene expression status across a large cell population. We successfully visualized MYC and EGFR DNA and nascent RNA with allele-level resolution in multiple cell types, and we determined the radial position of active and inactive MYC and EGFR alleles. These optimized DNA/RNA detection approaches are versatile and sensitive tools for mapping of chromatin features and gene activity at the single-allele level and at high throughput.

2.
Mol Biol Cell ; : mbcE24020082, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717453

RESUMO

Cell type-specific enhancers are critically important for lineage specification. The mechanisms that determine cell type-specificity of enhancer activity, however, are not fully understood. Most current models for how enhancers function invoke physical proximity between enhancer elements and their target genes. Here, we use an imaging-based approach to examine the spatial relationship of cell type-specific enhancers and their target genes with single cell resolution. Using high-throughput microscopy, we measure the spatial distance from target promoters to their cell type-specific active and inactive enhancers in individual pancreatic cells derived from distinct lineages. We find increased proximity of all promoter-enhancer pairs relative to non-enhancer pairs separated by similar genomic distances. Strikingly, spatial proximity between enhancers and target genes was unrelated to tissue-specific enhancer activity. Furthermore, promoter-enhancer proximity did not correlate with the expression status of target genes. Our results suggest that promoter-enhancer pairs exist in a distinctive chromatin environment but that genome folding is not a universal driver of cell type-specificity in enhancer function.

3.
Res Sq ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38464289

RESUMO

The spatial arrangement of the genome within the nucleus is a pivotal aspect of cellular organization and function with implications for gene expression and regulation. While all genome organization features, such as loops, domains, and radial positioning, are non-random, they are characterized by a high degree of single-cell variability. Imaging approaches are ideally suited to visualize, measure, and study single-cell heterogeneity in genome organization. Here, we describe two methods for the detection of DNA and RNA of individual gene alleles by fluorescence in situ hybridization (FISH) in a high-throughput format. We have optimized combined DNA/RNA FISH approaches either using simultaneous or sequential detection. These optimized DNA and RNA FISH protocols, implemented in a 384-well plate format alongside automated image and data analysis, enable accurate detection of chromatin loci and their gene expression status across a large cell population with allele-level resolution. We successfully visualized MYC and EGFR DNA and RNA in multiple cell types, and we determined the radial position of active and inactive MYC and EGFR alleles. These optimized DNA/RNA detection approaches are versatile and sensitive tools for mapping of chromatin features and gene activity at the single-allele level and at high throughput.

4.
bioRxiv ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38529487

RESUMO

The spatial arrangement of the genome within the nucleus is a pivotal aspect of cellular organization and function with implications for gene expression and regulation. While all genome organization features, such as loops, domains, and radial positioning, are non-random, they are characterized by a high degree of single-cell variability. Imaging approaches are ideally suited to visualize, measure, and study single-cell heterogeneity in genome organization. Here, we describe two methods for the detection of DNA and RNA of individual gene alleles by fluorescence in situ hybridization (FISH) in a high-throughput format. We have optimized combined DNA/RNA FISH approaches either using simultaneous or sequential detection. These optimized DNA and RNA FISH protocols, implemented in a 384-well plate format alongside automated image and data analysis, enable accurate detection of chromatin loci and their gene expression status across a large cell population with allele-level resolution. We successfully visualized MYC and EGFR DNA and RNA in multiple cell types, and we determined the radial position of active and inactive MYC and EGFR alleles. These optimized DNA/RNA detection approaches are versatile and sensitive tools for mapping of chromatin features and gene activity at the single-allele level and at high throughput.

5.
bioRxiv ; 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-38076967

RESUMO

High-throughput imaging (HTI) generates complex imaging datasets from a large number of experimental perturbations. Commercial HTI software for image analysis workflows does not allow full customization and adoption of new image processing algorithms in the analysis modules. While open-source HTI analysis platforms provide individual modules in the workflow, like nuclei segmentation, spot detection, or cell tracking, they are often limited in integrating novel analysis modules or algorithms. Here, we introduce the High-Throughput Image Processing Software (HiTIPS) to expand the range and customization of existing HTI analysis capabilities. HiTIPS incorporates advanced image processing and machine learning algorithms for automated cell and nuclei segmentation, spot signal detection, nucleus tracking, spot tracking, and quantification of spot signal intensity. Furthermore, HiTIPS features a graphical user interface that is open to integration of new algorithms for existing analysis pipelines and to adding new analysis pipelines through separate plugins. To demonstrate the utility of HiTIPS, we present three examples of image analysis workflows for high-throughput DNA FISH, immunofluorescence (IF), and live-cell imaging of transcription in single cells. Altogether, we demonstrate that HiTIPS is a user-friendly, flexible, and open-source HTI analysis platform for a variety of cell biology applications.

7.
Sci Rep ; 11(1): 19063, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561546

RESUMO

Over the past two decades, fibrillar collagen reorganization parameters such as the amount of collagen deposition, fiber angle and alignment have been widely explored in numerous studies. These parameters are now widely accepted as stromal biomarkers and linked to disease progression and survival time in several cancer types. Despite all these advances, there has not been a significant effort to make it possible for clinicians to explore these biomarkers without adding steps to the clinical workflow or by requiring high-cost imaging systems. In this paper, we evaluate previously described polychromatic polarization microscope (PPM) to visualize collagen fibers with an optically generated color representation of fiber orientation and alignment when inspecting the sample by a regular microscope with minor modifications. This system does not require stained slides, but is compatible with histological stains such as H&E. Consequently, it can be easily accommodated as part of regular pathology review of tissue slides, while providing clinically useful insight into stromal composition.


Assuntos
Colágenos Fibrilares/metabolismo , Microscopia de Polarização/métodos , Adenocarcinoma/metabolismo , Biomarcadores/metabolismo , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Humanos , Masculino , Pâncreas/metabolismo , Pâncreas/patologia , Neoplasias da Próstata/metabolismo
8.
Exp Eye Res ; 202: 108315, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33091431

RESUMO

The lamina cribrosa (LC) region of the optic nerve head (ONH) is considered a primary site for glaucomatous damage. In humans, biology of this region reflects complex interactions between retinal ganglion cell (RGC) axons and other resident ONH cell-types including astrocytes, lamina cribrosa cells, microglia and oligodendrocytes, as well as ONH microvasculature and collagenous LC beams. However, species differences in the microanatomy of this region could profoundly impact efforts to model glaucoma pathobiology in a research setting. In this study, we characterized resident cell-types, ECM composition and ultrastructure in relation to microanatomy of the ONH in adult domestic cats (Felis catus). Longitudinal and transverse cryosections of ONH tissues were immunolabeled with astrocyte, microglia/macrophage, oligodendrocyte, LC cell and vascular endothelial cell markers. Collagen fiber structure of the LC was visualized by second harmonic generation (SHG) with multiphoton microscopy. Fibrous astrocytes form glial fibrillary acidic protein (GFAP)-positive glial columns in the pre-laminar region, and cover the collagenous plates of the LC region in lamellae oriented perpendicular to the axons. GFAP-negative and alpha-smooth muscle actin-positive LC cells were identified in the feline ONH. IBA-1 positive immune cells and von Willebrand factor-positive blood vessel endothelial cells are also identifiable throughout the feline ONH. As in humans, myelination commences with a population of oligodendrocytes in the retro-laminar region of the feline ONH. Transmission electron microscopy confirmed the presence of capillaries and LC cells that extend thin processes in the core of the collagenous LC beams. In conclusion, the feline ONH closely recapitulates the complexity of the ONH of humans and non-human primates, with diverse ONH cell-types and a robust collagenous LC, within the beams of which, LC cells and capillaries reside. Thus, studies in a feline inherited glaucoma model have the potential to play a key role in enhancing our understanding of ONH cellular and molecular processes in glaucomatous optic neuropathy.


Assuntos
Astrócitos/citologia , Macrófagos/citologia , Microglia/citologia , Oligodendroglia/citologia , Disco Óptico/citologia , Animais , Astrócitos/metabolismo , Biomarcadores/metabolismo , Gatos , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Humanos , Macrófagos/metabolismo , Microglia/metabolismo , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Oligodendroglia/metabolismo
9.
Cancer Epidemiol Biomarkers Prev ; 30(1): 80-88, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33082201

RESUMO

BACKGROUND: There is widespread interest in discriminating indolent from aggressive ductal carcinoma in situ (DCIS). We sought to evaluate collagen organization in the DCIS tumor microenvironment in relation to pathologic characteristics and patient outcomes. METHODS: We retrieved fixed tissue specimens for 90 DCIS cases within the population-based Vermont DCIS Cohort. We imaged collagen fibers within 75 µm of the tumor/stromal boundary on hematoxylin and eosin-stained slides using multiphoton microscopy with second-harmonic generation. Automated software quantified collagen fiber length, width, straightness, density, alignment, and angle to the tumor/stroma boundary. Factor analysis identified linear combinations of collagen fiber features representing composite attributes of collagen organization. RESULTS: Multiple collagen features were associated with DCIS grade, necrosis pattern, or periductal fibrosis (P < 0.05). After adjusting for treatments and nuclear grade, risk of recurrence (defined as any second breast cancer diagnosis) was lower among cases with greater collagen fiber width [hazard ratio (HR), 0.57 per one standard deviation increase; 95% confidence interval (CI), 0.39-0.84] and fiber density (HR, 0.60; 95% CI, 0.42-0.85), whereas risk was elevated among DCIS cases with higher fiber straightness (HR, 1.47; 95% CI, 1.05-2.06) and distance to the nearest two fibers (HR, 1.47; 95% CI, 1.06-2.02). Fiber length, alignment, and fiber angle were not associated with recurrence (P > 0.05). Five composite factors were identified, accounting for 72.4% of the total variability among fibers; three were inversely associated with recurrence (HRs ranging from 0.60 to 0.67; P ≤ 0.01). CONCLUSIONS: Multiple aspects of collagen organization around DCIS lesions are associated with recurrence risk. IMPACT: Collagen organization should be considered in the development of prognostic DCIS biomarker signatures.


Assuntos
Neoplasias da Mama/patologia , Carcinoma Intraductal não Infiltrante/patologia , Colágeno/metabolismo , Recidiva Local de Neoplasia , Adulto , Idoso , Estudos de Coortes , Colágeno/ultraestrutura , Feminino , Humanos , Pessoa de Meia-Idade , Sistema de Registros
10.
Med Image Anal ; 68: 101938, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33359932

RESUMO

High-quality whole slide scanners used for animal and human pathology scanning are expensive and can produce massive datasets, which limits the access to and adoption of this technique. As a potential solution to these challenges, we present a deep learning-based approach making use of single image super-resolution (SISR) to reconstruct high-resolution histology images from low-resolution inputs. Such low-resolution images can easily be shared, require less storage, and can be acquired quickly using widely available low-cost slide scanners. The network consists of multi-scale fully convolutional networks capable of capturing hierarchical features. Conditional generative adversarial loss is incorporated to penalize blurriness in the output images. The network is trained using a progressive strategy where the scaling factor is sampled from a normal distribution with an increasing mean. The results are evaluated with quantitative metrics and are used in a clinical histopathology diagnosis procedure which shows that the SISR framework can be used to reconstruct high-resolution images with clinical level quality. We further propose a self-supervised color normalization method that can remove staining variation artifacts. Quantitative evaluations show that the SISR framework can generalize well on unseen data collected from other patient tissue cohorts by incorporating the color normalization method.


Assuntos
Imageamento por Ressonância Magnética , Redes Neurais de Computação , Técnicas Histológicas , Humanos
11.
Commun Biol ; 3(1): 414, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737412

RESUMO

The importance of fibrillar collagen topology and organization in disease progression and prognostication in different types of cancer has been characterized extensively in many research studies. These explorations have either used specialized imaging approaches, such as specific stains (e.g., picrosirius red), or advanced and costly imaging modalities (e.g., second harmonic generation imaging (SHG)) that are not currently in the clinical workflow. To facilitate the analysis of stromal biomarkers in clinical workflows, it would be ideal to have technical approaches that can characterize fibrillar collagen on standard H&E stained slides produced during routine diagnostic work. Here, we present a machine learning-based stromal collagen image synthesis algorithm that can be incorporated into existing H&E-based histopathology workflow. Specifically, this solution applies a convolutional neural network (CNN) directly onto clinically standard H&E bright field images to extract information about collagen fiber arrangement and alignment, without requiring additional specialized imaging stains, systems or equipment.


Assuntos
Biomarcadores Tumorais/isolamento & purificação , Colágenos Fibrilares/ultraestrutura , Imagem Molecular/métodos , Neoplasias/diagnóstico por imagem , Compostos Azo/química , Biomarcadores Tumorais/química , Progressão da Doença , Colágenos Fibrilares/isolamento & purificação , Humanos , Neoplasias/diagnóstico , Neoplasias/patologia , Redes Neurais de Computação , Prognóstico , Microscopia de Geração do Segundo Harmônico/métodos , Células Estromais/ultraestrutura
12.
Artigo em Inglês | MEDLINE | ID: mdl-32373594

RESUMO

Quantification of fibrillar collagen organization has given new insight into the possible role of collagen topology in many diseases and has also identified candidate image-based bio-markers in breast cancer and pancreatic cancer. We have been developing collagen quantification tools based on the curvelet transform (CT) algorithm and have demonstrated this to be a powerful multiscale image representation method due to its unique features in collagen image denoising and fiber edge enhancement. In this paper, we present our CT-based collagen quantification software platform with a focus on new features and also giving a detailed description of curvelet-based fiber representation. These new features include C++-based code optimization for fast individual fiber tracking, Java-based synthetic fiber generator module for method validation, automatic tumor boundary generation for fiber relative quantification, parallel computing for large-scale batch mode processing, region-of-interest analysis for user-specified quantification, and pre- and post-processing modules for individual fiber visualization. We present a validation of the tracking of individual fibers and fiber orientations by using synthesized fibers generated by the synthetic fiber generator. In addition, we provide a comparison of the fiber orientation calculation on pancreatic tissue images between our tool and three other quantitative approaches. Lastly, we demonstrate the use of our software tool for the automatic tumor boundary creation and the relative alignment quantification of collagen fibers in human breast cancer pathology images, as well as the alignment quantification of in vivo mouse xenograft breast cancer images.

13.
Biomed Opt Express ; 11(3): 1354-1364, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32206415

RESUMO

New quantitative prognostic markers are needed for improved pancreatic ductal adenocarcinoma (PDAC) prognosis. Second harmonic generation microscopy has been used to show that collagen fiber alignment in PDAC is a negative prognostic factor. In this work, a series of PDAC and normal adjacent tissue (NAT) biopsies were imaged with spatial light interference microscopy (SLIM). Quantitative analysis performed on the biopsy SLIM images show that PDAC fiber structures have lower alignment per unit length, narrower width, and are longer than NAT controls. Importantly, fibrillar collagen in PDAC shows an inverse relationship between survival data and fiber width and length (p < 0.05).

15.
Biomed Opt Express ; 11(1): 160-173, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32010507

RESUMO

The use of second-harmonic generation (SHG) microscopy in biomedical research is rapidly increasing. This is due in large part to the wide spread interest of using this imaging technique to examine the role of fibrillar collagen organization in diseases such as cancer. The co-examination of SHG images and traditional bright-field (BF) images of hematoxylin and eosin (H&E) stained tissue as a gold standard clinical validation is usually required. However, image registration of these two modalities has been mostly done by manually selecting corresponding landmarks which is labor intensive and error prone. We designed, implemented, and validated the first image intensity-based registration method capable of automatically aligning SHG images and BF images. In our algorithmic approach, a feature extractor is used to pre-process the BF image to block the content features not visible in SHG images and the output image is then aligned with the SHG image by maximizing the common image features. An alignment matrix maximizing the image mutual information is found by evolutionary optimization and the optimization is facilitated using a hierarchical multiresolution framework. The automatic registration results were compared to traditional manual registration to assess the performance of the algorithm. The proposed algorithm has been successfully used in several biomedical studies such as pancreatic and kidney cancer studies and shown great efficacy.

16.
J Biomed Opt ; 24(12): 1-15, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31837128

RESUMO

We study a problem scenario of super-resolution (SR) algorithms in the context of whole slide imaging (WSI), a popular imaging modality in digital pathology. Instead of just one pair of high- and low-resolution images, which is typically the setup in which SR algorithms are designed, we are given multiple intermediate resolutions of the same image as well. The question remains how to best utilize such data to make the transformation learning problem inherent to SR more tractable and address the unique challenges that arises in this biomedical application. We propose a recurrent convolutional neural network model, to generate SR images from such multi-resolution WSI datasets. Specifically, we show that having such intermediate resolutions is highly effective in making the learning problem easily trainable and address large resolution difference in the low and high-resolution images common in WSI, even without the availability of a large size training data. Experimental results show state-of-the-art performance on three WSI histopathology cancer datasets, across a number of metrics.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Microscopia/métodos , Redes Neurais de Computação , Algoritmos , Técnicas Histológicas , Humanos , Aprendizado de Máquina , Neoplasias/patologia
17.
Sci Rep ; 9(1): 14679, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31604963

RESUMO

Tissue biopsy evaluation in the clinic is in need of quantitative disease markers for diagnosis and, most importantly, prognosis. Among the new technologies, quantitative phase imaging (QPI) has demonstrated promise for histopathology because it reveals intrinsic tissue nanoarchitecture through the refractive index. However, a vast majority of past QPI investigations have relied on imaging unstained tissues, which disrupts the established specimen processing. Here we present color spatial light interference microscopy (cSLIM) as a new whole-slide imaging modality that performs interferometric imaging on stained tissue, with a color detector array. As a result, cSLIM yields in a single scan both the intrinsic tissue phase map and the standard color bright-field image, familiar to the pathologist. Our results on 196 breast cancer patients indicate that cSLIM can provide stain-independent prognostic information from the alignment of collagen fibers in the tumor microenvironment. The effects of staining on the tissue phase maps were corrected by a mathematical normalization. These characteristics are likely to reduce barriers to clinical translation for the new cSLIM technology.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Mama/diagnóstico por imagem , Colágeno/genética , Microscopia de Interferência/métodos , Biópsia , Mama/patologia , Neoplasias da Mama/patologia , Corantes/farmacologia , Intervalo Livre de Doença , Feminino , Humanos , Prognóstico , Coloração e Rotulagem/métodos , Microambiente Tumoral
18.
Biomed Eng Lett ; 9(3): 339-349, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31456893

RESUMO

Mueller polarimetry is a quantitative polarized light imaging modality that is capable of label-free visualization of tissue pathology, does not require extensive sample preparation, and is suitable for wide-field tissue analysis. It holds promise for selected applications in biomedicine, but polarimetry systems are often constrained by limited end-user accessibility and/or long-imaging times. In order to address these needs, we designed a multiscale-polarimetry module that easily couples to a commercially available stereo zoom microscope. This paper describes the module design and provides initial polarimetry imaging results from a murine preclinical breast cancer model and human breast cancer samples. The resultant polarimetry module has variable resolution and field of view, is low-cost, and is simple to switch in or out of a commercial microscope. The module can reduce long imaging times by adopting the main imaging approach used in pathology: scanning at low resolution to identify regions of interest, then at high resolution to inspect the regions in detail. Preliminary results show how the system can aid in region of interest identification for pathology, but also highlight that more work is needed to understand how tissue structures of pathological interest appear in Mueller polarimetry images across varying spatial zoom scales.

19.
BMC Cancer ; 19(1): 490, 2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31122202

RESUMO

BACKGROUND: The traditional pathologic grading for human renal cell carcinoma (RCC) has low concordance between biopsy and surgical specimen. There is a need to investigate adjunctive pathology technique that does not rely on the nuclear morphology that defines the traditional grading. Changes in collagen organization in the extracellular matrix have been linked to prognosis or grade in breast, ovarian, and pancreatic cancers, but collagen organization has never been correlated with RCC grade. In this study, we used Second Harmonic Generation (SHG) based imaging to quantify possible differences in collagen organization between high and low grades of human RCC. METHODS: A tissue microarray (TMA) was constructed from RCC tumor specimens. Each TMA core represents an individual patient. A 5 µm section from the TMA tissue was stained with standard hematoxylin and eosin (H&E). Bright field images of the H&E stained TMA were used to annotate representative RCC regions. In this study, 70 grade 1 cores and 51 grade 4 cores were imaged on a custom-built forward SHG microscope, and images were analyzed using established software tools to automatically extract and quantify collagen fibers for alignment and density assessment. A linear mixed-effects model with random intercepts to account for the within-patient correlation was created to compare grade 1 vs. grade 4 measurements and the statistical tests were two-sided. RESULTS: Both collagen density and alignment differed significantly between RCC grade 1 and RCC grade 4. Specifically, collagen fiber density was greater in grade 4 than in grade 1 RCC (p < 0.001). Collagen fibers were also more aligned in grade 4 compared to grade 1 (p < 0.001). CONCLUSIONS: Collagen density and alignment were shown to be significantly higher in RCC grade 4 vs. grade 1. This technique of biopsy sampling by SHG could complement classical tumor grading approaches. Furthermore it might allow biopsies to be more clinically relevant by informing diagnostics. Future studies are required to investigate the functional role of collagen organization in RCC.


Assuntos
Carcinoma de Células Renais/diagnóstico por imagem , Colágeno/metabolismo , Neoplasias Renais/diagnóstico por imagem , Gradação de Tumores , Biomarcadores Tumorais/metabolismo , Biópsia , Matriz Extracelular/patologia , Humanos , Rim/patologia , Modelos Lineares , Prognóstico , Microscopia de Geração do Segundo Harmônico , Análise Serial de Tecidos
20.
Laryngoscope ; 129(11): 2549-2556, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30628080

RESUMO

OBJECTIVES/HYPOTHESIS: Vocal fold collagen composition is an important determinant of material properties and mucosal wave propagation. Collagen alignment and straightness are quantitatively characterized by second harmonic generation (SHG) imaging. We examined leporine, canined and porcine vocal folds showing collagen composition variation that is species, location, and strain specific. STUDY DESIGN: Animal model. METHODS: Leporine (n = 5), canine (n = 5), and porcine (n = 5) larynges were harvested and fixed in situ. Samples were transversely sectioned, and SHG images were collected for two inferior-superior sections along five anterior-posterior locations. Additional porcine samples were fixed and imaged under tensile strain (0%, 5%, 10%, 15%, 20%, n = 5 per group). Two-way repeated measures (RM) analysis of variance (ANOVA) tested for section and location differences in each species. Multiway RM-ANOVA tested for section, location, and strain differences in porcine samples. RESULTS: Alignment and straightness were higher inferiorly in the porcine (P = .0047, P = .002) and canine (P = .0011, P < .001) vocal folds, but not in leporine samples (P = .67652, P = .4831). There were significant interactions between elongation and superior-inferior section for both alignment (P = .0047) and straightness (P = .0371). CONCLUSIONS: Our results correspond well to findings in the literature that the inferior vocal fold lip is stiffer in porcine and canine larynges. The absence of a collagen gradient in the leporine vocal fold is notable because rabbits are less vocal animals, indicating the collagen gradient may be a result of voice use and an important consideration in model selection when extracellular matrix is of interest. Strain results were also consistent with the role of collagen in strain stiffening behavior of vocal fold tissue. LEVEL OF EVIDENCE: NA Laryngoscope, 129:2549-2556, 2019.


Assuntos
Colágeno , Microscopia de Geração do Segundo Harmônico/estatística & dados numéricos , Prega Vocal/diagnóstico por imagem , Análise de Variância , Animais , Cães , Laringe/diagnóstico por imagem , Modelos Animais , Coelhos , Microscopia de Geração do Segundo Harmônico/métodos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...