Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 168: 309-322, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37479158

RESUMO

The preservation of oral health over a person's lifespan is a key factor for a high quality of life. Sustaining oral health requires high-end dental materials with a plethora of attributes such as durability, non-toxicity and ease of application. The combination of different requirements leads to increasing miniaturization and complexity of the material components such as the composite and adhesives, which makes the precise characterization of the material blend challenging. Here, we demonstrate how modern IR spectroscopy and imaging from the micro- to the nanoscale can provide insights on the chemical composition of the different material sections of a dental filling. We show how the recorded IR-images can be used for a fast and non-destructive porosity determination of the studied adhesive. Furthermore, the nanoscale study allows precise assessment of glass cluster structures and distribution within their characteristic organically modified ceramic (ORMOCER) matrix and an assessment of the interface between the composite and adhesive material. For the study we used a Fourier-Transform-IR (FTIR) microscope and a quantum cascade laser-based IR-microscope (QCL-IR) for the microscale analysis and a scattering-type scanning near-field optical microscopy (s-SNOM) for the nanoscale analysis. The paper ends with an in-depth discussion of the strengths and weaknesses of the different imaging methods to give the reader a clear picture for which scientific question the microscopes are best suited for. STATEMENT OF SIGNIFICANCE: Modern resin-based composites for dental restoration are complex multi-compound materials. In order to improve these high-end materials, it is important to investigate the molecular composition and morphology of the different parts. An emergent method to characterize these materials is infrared spectroscopic imaging, which combines the strength of infrared spectroscopy and an imaging approach known from optical microscopy. In this work, three state of the art methods are compared for investigating a dental filling including FTIR- and quantum cascade laser IR-imaging microscopy for the microscale and scattering-type scanning near-field optical microscopy for the nanoscale.


Assuntos
Microscopia , Qualidade de Vida , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Microscopia/métodos , Espectrofotometria Infravermelho , Materiais Dentários , Teste de Materiais , Resinas Compostas/química
2.
Sci Rep ; 11(1): 21860, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750511

RESUMO

Infrared fingerprint spectra can reveal the chemical nature of materials down to 20-nm detail, far below the diffraction limit, when probed by scattering-type scanning near-field optical microscopy (s-SNOM). But this was impossible with living cells or aqueous processes as in corrosion, due to water-related absorption and tip contamination. Here, we demonstrate infrared s-SNOM of water-suspended objects by probing them through a 10-nm thick SiN membrane. This separator stretches freely over up to 250 µm, providing an upper, stable surface to the scanning tip, while its lower surface is in contact with the liquid and localises adhering objects. We present its proof-of-principle applicability in biology by observing simply drop-casted, living E. coli in nutrient medium, as well as living A549 cancer cells, as they divide, move and develop rich sub-cellular morphology and adhesion patterns, at 150 nm resolution. Their infrared spectra reveal the local abundances of water, proteins, and lipids within a depth of ca. 100 nm below the SiN membrane, as we verify by analysing well-defined, suspended polymer spheres and through model calculations. SiN-membrane based s-SNOM thus establishes a novel tool of live cell nano-imaging that returns structure, dynamics and chemical composition. This method should benefit the nanoscale analysis of any aqueous system, from physics to medicine.


Assuntos
Microscopia/métodos , Nanopartículas , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Células A549/química , Células A549/patologia , Escherichia coli/química , Escherichia coli/citologia , Humanos , Microscopia Intravital/métodos , Nanotecnologia , Fenômenos Ópticos , Compostos de Silício , Análise de Célula Única , Espectroscopia de Infravermelho com Transformada de Fourier , Água
3.
Anal Chem ; 92(7): 4716-4720, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32129604

RESUMO

Polymer brush coatings are effective in preventing blood coagulation or bacterial attachment, but their chain conformation, while vital for this effect, was never characterized in high spatial resolution. Here, we report mid-infrared spectroscopic nanoscopy studies of few-nanometer-thin poly(ethylene oxide) (PEO) films which reveal marked spectral variations along the surface at a length scale smaller than 100 nm and originating only from the physical conformation of the chains. The conformation and average orientation of the polymer chains in the layer is extracted from the spectra with the aid of theoretic modeling, confirming the spontaneous formation of a crystalline phase. This result suggests spectroscopic nanoscopy as a powerful new tool to characterize polymer brush coatings.


Assuntos
Nanotecnologia , Polietilenoglicóis/química , Raios Infravermelhos , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
4.
Opt Express ; 26(14): 18423-18435, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-30114022

RESUMO

At terahertz (THz) frequencies, scattering-type scanning near-field optical microscopy (s-SNOM) based on continuous wave sources mostly relies on cryogenic and bulky detectors, which represents a major constraint for its practical application. Here, we devise a THz s-SNOM system that provides both amplitude and phase contrast and achieves nanoscale (60-70nm) in-plane spatial resolution. It features a quantum cascade laser that simultaneously emits THz frequency light and senses the backscattered optical field through a voltage modulation induced inherently through the self-mixing technique. We demonstrate its performance by probing a phonon-polariton-resonant CsBr crystal and doped black phosphorus flakes.

5.
Nano Lett ; 17(9): 5285-5290, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28805397

RESUMO

We investigated phonon-polaritons in hexagonal boron nitride-a naturally hyperbolic van der Waals material-by means of the scattering-type scanning near-field optical microscopy. Real-space nanoimages we have obtained detail how the polaritons are launched when the light incident on a thin hexagonal boron nitride slab is scattered by various intrinsic and extrinsic inhomogeneities, including sample edges, metallic nanodisks deposited on its top surface, random defects, and surface impurities. The scanned tip of the near-field microscope is itself a polariton launcher whose efficiency proves to be superior to all the other types of polariton launchers we studied. Our work may inform future development of polaritonic nanodevices as well as fundamental studies of collective modes in van der Waals materials.

6.
Adv Mater ; 29(26)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28480616

RESUMO

A method has been developed to stabilize and transfer nanofilms of functional organic semiconductors. The method is based on crosslinking of their topmost layers by low energy electron irradiation. The films can then be detached from their original substrates and subsequently deposited onto new solid or holey substrates retaining their structural integrity. Grazing incidence X-ray diffraction, X-ray specular reflectivity, and UV-Vis spectroscopy measurements reveal that the electron irradiation of ≈50 nm thick pentacene films results in crosslinking of their only topmost ≈5 nm (3-4 monolayers), whereas the deeper pentacene layers preserve their pristine crystallinity. The electronic performance of the transferred pentacene nanosheets in bottom contact field-effect devices is studied and it is found that they are fully functional and demonstrate superior charge injection properties in comparison to the pentacene films directly grown on the contact structures by vapor deposition. The new approach paves the way to integration of the organic semiconductor nanofilms on substrates unfavorable for their direct growth as well as to their implementation in hybrid devices with unusual geometries, e.g., in devices incorporating free-standing sheets.

7.
ACS Nano ; 9(8): 7968-75, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26223158

RESUMO

Scattering scanning near-field optical microscopy (s-SNOM) has emerged as a powerful nanoscale spectroscopic tool capable of characterizing individual biomacromolecules and molecular materials. However, applications of scattering-based near-field techniques in the infrared (IR) to native biosystems still await a solution of how to implement the required aqueous environment. In this work, we demonstrate an IR-compatible liquid cell architecture that enables near-field imaging and nanospectroscopy by taking advantage of the unique properties of graphene. Large-area graphene acts as an impermeable monolayer barrier that allows for nano-IR inspection of underlying molecular materials in liquid. Here, we use s-SNOM to investigate the tobacco mosaic virus (TMV) in water underneath graphene. We resolve individual virus particles and register the amide I and II bands of TMV at ca. 1520 and 1660 cm(-1), respectively, using nanoscale Fourier transform infrared spectroscopy (nano-FTIR). We verify the presence of water in the graphene liquid cell by identifying a spectral feature associated with water absorption at 1610 cm(-1).


Assuntos
Grafite/química , Nanotecnologia/instrumentação , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Nanotecnologia/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Vírus do Mosaico do Tabaco/ultraestrutura , Água/química
8.
Nat Commun ; 5: 5445, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25487365

RESUMO

Advances in the spatial resolution of modern analytical techniques have tremendously augmented the scientific insight gained from the analysis of natural samples. Yet, while techniques for the elemental and structural characterization of samples have achieved sub-nanometre spatial resolution, infrared spectral mapping of geochemical samples at vibrational 'fingerprint' wavelengths has remained restricted to spatial scales >10 µm. Nevertheless, infrared spectroscopy remains an invaluable contactless probe of chemical structure, details of which offer clues to the formation history of minerals. Here we report on the successful implementation of infrared near-field imaging, spectroscopy and analysis techniques capable of sub-micron scale mineral identification within natural samples, including a chondrule from the Murchison meteorite and a cometary dust grain (Iris) from NASA's Stardust mission. Complementary to scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy probes, this work evidences a similarity between chondritic and cometary materials, and inaugurates a new era of infrared nano-spectroscopy applied to small and invaluable extraterrestrial samples.

9.
Nano Lett ; 14(8): 4529-34, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25046340

RESUMO

We report on time-resolved mid-infrared (mid-IR) near-field spectroscopy of the narrow bandgap semiconductor InAs. The dominant effect we observed pertains to the dynamics of photoexcited carriers and associated surface plasmons. A novel combination of pump-probe techniques and near-field nanospectroscopy accesses high momentum plasmons and demonstrates efficient, subpicosecond photomodulation of the surface plasmon dispersion with subsequent tens of picoseconds decay under ambient conditions. The photoinduced change of the probe intensity due to plasmons in InAs is found to exceed that of other mid-IR or near-IR media by 1-2 orders of magnitude. Remarkably, the required control pulse fluence is as low as 60 µJ/cm(2), much smaller than fluences of ∼ 1-10 mJ/cm(2) previously utilized in ultrafast control of near-IR plasmonics. These low excitation densities are easily attained with a standard 1.56 µm fiber laser. Thus, InAs--a common semiconductor with favorable plasmonic properties such as a low effective mass--has the potential to become an important building block of optically controlled plasmonic devices operating at infrared frequencies.

10.
Nat Commun ; 5: 4101, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24916130

RESUMO

Controlling the domain size and degree of crystallization in organic films is highly important for electronic applications such as organic photovoltaics, but suitable nanoscale mapping is very difficult. Here we apply infrared-spectroscopic nano-imaging to directly determine the local crystallinity of organic thin films with 20-nm resolution. We find that state-of-the-art pentacene films (grown on SiO2 at elevated temperature) are structurally not homogeneous but exhibit two interpenetrating phases at sub-micrometre scale, documented by a shifted vibrational resonance. We observe bulk-phase nucleation of distinct ellipsoidal shape within the dominant pentacene thin-film phase and also further growth during storage. A faint topographical contrast as well as X-ray analysis corroborates our interpretation. As bulk-phase nucleation obstructs carrier percolation paths within the thin-film phase, hitherto uncontrolled structural inhomogeneity might have caused conflicting reports about pentacene carrier mobility. Infrared-spectroscopic nano-imaging of nanoscale polymorphism should have many applications ranging from organic nanocomposites to geologic minerals.

11.
Nano Lett ; 14(2): 894-900, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24479682

RESUMO

Pump-probe spectroscopy is central for exploring ultrafast dynamics of fundamental excitations, collective modes, and energy transfer processes. Typically carried out using conventional diffraction-limited optics, pump-probe experiments inherently average over local chemical, compositional, and electronic inhomogeneities. Here, we circumvent this deficiency and introduce pump-probe infrared spectroscopy with ∼ 20 nm spatial resolution, far below the diffraction limit, which is accomplished using a scattering scanning near-field optical microscope (s-SNOM). This technique allows us to investigate exfoliated graphene single-layers on SiO2 at technologically significant mid-infrared (MIR) frequencies where the local optical conductivity becomes experimentally accessible through the excitation of surface plasmons via the s-SNOM tip. Optical pumping at near-infrared (NIR) frequencies prompts distinct changes in the plasmonic behavior on 200 fs time scales. The origin of the pump-induced, enhanced plasmonic response is identified as an increase in the effective electron temperature up to several thousand Kelvin, as deduced directly from the Drude weight associated with the plasmonic resonances.

12.
J Biophotonics ; 7(6): 418-24, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23420621

RESUMO

A recently developed ultra-resolving near-field infrared nanoscope is applied to investigate methyl methacrylate embedded, un-decalcified human bone sections. Results show detail at a resolution of 30 nm. Specific contrasting of mineral components is enabled by choosing an appropriate infrared wavelength, here 9.47 µm, in the phosphate vibrational band. The method is surface-sensitive, probing to a depth of about 30 nm into the surface. The obtained infrared images are presented in direct comparison with optical and electron micrographs of the identical specimen. Lamellar bone organization, peri-cellular mineral deposition, and regional differences in mineral content are clearly detectable. Individual fibrils are resolved. - Infrared nanoscopy requires just standard hard tissue preparation techniques combined with section surface polishing. It can be integrated into existing laboratory environments without impeding subsequent routine staining and evaluation methods.


Assuntos
Fêmur/patologia , Raios Infravermelhos , Metacrilatos/química , Microscopia/métodos , Nanotecnologia/métodos , Inclusão do Tecido , Idoso , Humanos , Masculino , Necrose
13.
Nano Lett ; 12(8): 3973-8, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22703339

RESUMO

We demonstrate Fourier transform infrared nanospectroscopy (nano-FTIR) based on a scattering-type scanning near-field optical microscope (s-SNOM) equipped with a coherent-continuum infrared light source. We show that the method can straightforwardly determine the infrared absorption spectrum of organic samples with a spatial resolution of 20 nm, corresponding to a probed volume as small as 10 zeptoliter (10(-20) L). Corroborated by theory, the nano-FTIR absorption spectra correlate well with conventional FTIR absorption spectra, as experimentally demonstrated with poly(methyl methacrylate) (PMMA) samples. Nano-FTIR can thus make use of standard infrared databases of molecular vibrations to identify organic materials in ultrasmall quantities and at ultrahigh spatial resolution. As an application example we demonstrate the identification of a nanoscale PDMS contamination on a PMMA sample.


Assuntos
Nanotecnologia , Tamanho da Partícula , Polimetil Metacrilato/química , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Beilstein J Nanotechnol ; 3: 312-23, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22563528

RESUMO

Methods for imaging of nanocomposites based on X-ray, electron, tunneling or force microscopy provide information about the shapes of nanoparticles; however, all of these methods fail on chemical recognition. Neither do they allow local identification of mineral type. We demonstrate that infrared near-field microscopy solves these requirements at 20 nm spatial resolution, highlighting, in its first application to natural nanostructures, the mineral particles in shell and bone. "Nano-FTIR" spectral images result from Fourier-transform infrared (FTIR) spectroscopy combined with scattering scanning near-field optical microscopy (s-SNOM). On polished sections of Mytilus edulis shells we observe a reproducible vibrational (phonon) resonance within all biocalcite microcrystals, and distinctly different spectra on bioaragonite. Surprisingly, we discover sparse, previously unknown, 20 nm thin nanoparticles with distinctly different spectra that are characteristic of crystalline phosphate. Multicomponent phosphate bands are observed on human tooth sections. These spectra vary characteristically near tubuli in dentin, proving a chemical or structural variation of the apatite nanocrystals. The infrared band strength correlates with the mineral density determined by electron microscopy. Since nano-FTIR sensitively responds to structural disorder it is well suited for the study of biomineral formation and aging. Generally, nano-FTIR is suitable for the analysis and identification of composite materials in any discipline, from testing during nanofabrication to even the clinical investigation of osteopathies.

15.
Nano Lett ; 11(11): 4701-5, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-21972938

RESUMO

We report on infrared (IR) nanoscopy of 2D plasmon excitations of Dirac fermions in graphene. This is achieved by confining mid-IR radiation at the apex of a nanoscale tip: an approach yielding 2 orders of magnitude increase in the value of in-plane component of incident wavevector q compared to free space propagation. At these high wavevectors, the Dirac plasmon is found to dramatically enhance the near-field interaction with mid-IR surface phonons of SiO(2) substrate. Our data augmented by detailed modeling establish graphene as a new medium supporting plasmonic effects that can be controlled by gate voltage.


Assuntos
Grafite/química , Grafite/efeitos da radiação , Modelos Químicos , Nanoestruturas/química , Nanoestruturas/efeitos da radiação , Dióxido de Silício/química , Dióxido de Silício/efeitos da radiação , Ressonância de Plasmônio de Superfície/métodos , Simulação por Computador , Raios Infravermelhos , Teste de Materiais , Tamanho da Partícula
16.
Opt Express ; 17(24): 21794-801, 2009 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-19997423

RESUMO

We demonstrate continuous infrared spectra from 20 nm sample spots, by combining dispersive Fourier-transform infrared spectroscopy (FTIR) with scattering near-field microscopy (s-SNOM). With the "apertureless" tip of a standard AFM cantilever in one arm of a Michelson interferometer the spectra arise simultaneously in amplitude and phase. The effect of near-field phonon resonance of SiC is used to verify background-free s-SNOM operation, and to determine the absolute scattering efficiency, at 6 cm(-1) spectral resolution. We further report first evidence of free-induction decay from a scatterer composed of parts coupled by near-fields. This is possible only with broadband illumination. It offers a new, unique tool to discriminate against background scattering artifacts.


Assuntos
Interferometria/instrumentação , Microscopia de Força Atômica/instrumentação , Óptica e Fotônica , Espectrofotometria Infravermelho/métodos , Desenho de Equipamento , Análise de Fourier , Processamento de Imagem Assistida por Computador , Lasers , Reprodutibilidade dos Testes , Espalhamento de Radiação
17.
Nano Lett ; 6(7): 1307-10, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16834401

RESUMO

We demonstrate that scattering near-field microscopy (s-SNOM) can determine infrared "fingerprint" spectra of individual poly(methyl methacrylate) nanobeads and viruses as small as 18 nm. Amplitude and phase spectra are found surprisingly strong, even at a probed volume of only 10(-20) l, and robust in regard to particle size and substrate. This makes infrared spectroscopic s-SNOM a versatile tool for chemical and-in the case of protein-secondary-structure identification.


Assuntos
Microscopia/instrumentação , Microscopia/métodos , Nanoestruturas/química , Polimetil Metacrilato/química , Espectroscopia de Luz Próxima ao Infravermelho/instrumentação , Vírus/química , Ouro/química , Nanoestruturas/ultraestrutura , Estrutura Secundária de Proteína , Espalhamento de Radiação , Vírus/ultraestrutura
18.
Opt Express ; 14(23): 11222-33, 2006 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19529536

RESUMO

We introduce a new concept of spectroscopic near-field optical microscopy that records broad infrared spectra at each pixel during scanning. Two coherent beams with harmonic frequency-comb spectra are employed, one for illuminating the scanning tip, the other as reference for multi-heterodyne detection of the scattered light. Our implementation yields 200 cm(-1) wide amplitude and phase spectra centered at 950 cm(-1) (this band can be tuned between 700 and 1400 cm(-1)). We introduce a new technique of background suppression enabled by the short, 10 mus "snapshot" acquisition of infrared spectra which allows time-resolving the tapping motion. Thus we demonstrate broad-band mid-infrared near-field imaging that is essentially free of background artefacts.

19.
Opt Express ; 13(22): 9029-38, 2005 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-19498938

RESUMO

We demonstrate real-time recording of chemical vapor fluc-tuations from 22m away with a fast Fourier-transform infrared (FTIR) spectrometer that uses a laser-like infrared probing beam generated from two 10-fs Ti:sapphire lasers. The FTIR's broad 9-12 microm spectrum in the "molecular fingerprint" region is dispersed by fast heterodyne self-scanning, enabling spectra at 2cm-1 resolution to be recorded in 70 micros snapshots. We achieve continuous acquisition at a rate of 950 IR spectra per second by actively manipulating the repetition rate of one laser. Potential applications include video-rate chemical imaging and transient spectroscopy of e.g. gas plumes, flames and plasmas, and generally non-repetitive phenomena such as those found in protein folding dynamics and pulsed magnetic fields research.

20.
Philos Trans A Math Phys Eng Sci ; 362(1817): 787-805, 2004 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15306494

RESUMO

We describe ultraresolution microscopy far beyond the classical Abbe diffraction limit of one half wavelength (lambda/2), and also beyond the practical limit (ca. lambda/10) of aperture-based scanning near-field optical microscopy (SNOM). The 'apertureless' SNOM discussed here uses light scattering from a sharp tip (hence scattering-type or s-SNOM) and has no lambda-related resolution limit. Rather, its resolution is approximately equal to the radius a of the probing tip (for commercial tips, a < 20 nm) so that 10 nm is obtained in the visible (lambda/60). A resolution of lambda/500 has been obtained in the mid-infrared at lambda = 10 microm. The advantage of infrared, terahertz and even microwave illumination is that specific excitations can be exploited to yield specific contrast, e.g. the molecular vibration offering a spectroscopic fingerprint to identify chemical composition. S-SNOM can routinely acquire simultaneous amplitude and phase images to obtain information on refractive and absorptive properties. Plasmon- or phonon-resonant materials can be highlighted by their particularly high near-field signal level. Furthermore, s-SNOM can map the characteristic optical eigenfields of small, optically resonant particles. Lastly, we describe theoretical modelling that explains and predicts s-SNOM contrast on the basis of the local dielectric function.


Assuntos
Microscopia de Varredura por Sonda/instrumentação , Microscopia de Varredura por Sonda/métodos , Modelos Teóricos , Desenho de Equipamento , Aumento da Imagem/métodos , Luz , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Tamanho da Partícula , Ressonância de Plasmônio de Superfície/instrumentação , Ressonância de Plasmônio de Superfície/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...