Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Nat Commun ; 10(1): 4141, 2019 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31515488

RESUMO

Each human genome carries tens of thousands of coding variants. The extent to which this variation is functional and the mechanisms by which they exert their influence remains largely unexplored. To address this gap, we leverage the ExAC database of 60,706 human exomes to investigate experimentally the impact of 2009 missense single nucleotide variants (SNVs) across 2185 protein-protein interactions, generating interaction profiles for 4797 SNV-interaction pairs, of which 421 SNVs segregate at > 1% allele frequency in human populations. We find that interaction-disruptive SNVs are prevalent at both rare and common allele frequencies. Furthermore, these results suggest that 10.5% of missense variants carried per individual are disruptive, a higher proportion than previously reported; this indicates that each individual's genetic makeup may be significantly more complex than expected. Finally, we demonstrate that candidate disease-associated mutations can be identified through shared interaction perturbations between variants of interest and known disease mutations.


Assuntos
Frequência do Gene/genética , Variação Genética , Genética Populacional , Alelos , Animais , Sequência de Bases , Doença/genética , Predisposição Genética para Doença , Genoma Humano , Células HEK293 , Humanos , Camundongos , Mutação de Sentido Incorreto/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Ligação Proteica/genética
2.
Front Genet ; 10: 271, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024614

RESUMO

Genome-Wide association studies (GWAS), based on testing one single nucleotide polymorphism (SNP) at a time, have revolutionized our understanding of the genetics of complex traits. In GWAS, there is a need to consider confounding effects such as due to population structure, and take groups of SNPs into account simultaneously due to the "polygenic" attribute of complex quantitative traits. In this paper, we propose a new approach SGL-LMM that puts together sparse group lasso (SGL) and linear mixed model (LMM) for multivariate associations of quantitative traits. LMM, as has been often used in GWAS, controls for confounders, while SGL maintains sparsity of the underlying multivariate regression model. SGL-LMM first sets a fixed zero effect to learn the parameters of random effects using LMM, and then estimates fixed effects using SGL regularization. We present efficient algorithms for hyperparameter tuning and feature selection using stability selection. While controlling for confounders and constraining for sparse solutions, SGL-LMM also provides a natural framework for incorporating prior biological information into the group structure underlying the model. Results based on both simulated and real data show SGL-LMM outperforms previous approaches in terms of power to detect associations and accuracy of quantitative trait prediction.

3.
Genes (Basel) ; 9(12)2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30563156

RESUMO

Among the various statistical methods for identifying gene⁻gene interactions in qualitative genome-wide association studies (GWAS), gene-based methods have recently grown in popularity because they confer advantages in both statistical power and biological interpretability. However, most of these methods make strong assumptions about the form of the relationship between traits and single-nucleotide polymorphisms, which result in limited statistical power. In this paper, we propose a gene-based method based on the distance correlation coefficient called gene-based gene-gene interaction via distance correlation coefficient (GBDcor). The distance correlation (dCor) is a measurement of the dependency between two random vectors with arbitrary, and not necessarily equal, dimensions. We used the difference in dCor in case and control datasets as an indicator of gene⁻gene interaction, which was based on the assumption that the joint distribution of two genes in case subjects and in control subjects should not be significantly different if the two genes do not interact. We designed a permutation-based statistical test to evaluate the difference between dCor in cases and controls for a pair of genes, and we provided the p-value for the statistic to represent the significance of the interaction between the two genes. In experiments with both simulated and real-world data, our method outperformed previous approaches in detecting interactions accurately.

4.
Science ; 360(6385): 153-154, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29650659
5.
Nat Ecol Evol ; 1: 167, 2017 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-29094686

RESUMO

Fatty acid desaturase (FADS) genes encode rate-limiting enzymes for the biosynthesis of omega-6 and omega-3 long-chain polyunsaturated fatty acids (LCPUFAs). This biosynthesis is essential for individuals subsisting on LCPUFA-poor diets (for example, plant-based). Positive selection on FADS genes has been reported in multiple populations, but its cause and pattern in Europeans remain unknown. Here we demonstrate, using ancient and modern DNA, that positive selection acted on the same FADS variants both before and after the advent of farming in Europe, but on opposite (that is, alternative) alleles. Recent selection in farmers also varied geographically, with the strongest signal in southern Europe. These varying selection patterns concur with anthropological evidence of varying diets, and with the association of farming-adaptive alleles with higher FADS1 expression and thus enhanced LCPUFA biosynthesis. Genome-wide association studies reveal that farming-adaptive alleles not only increase LCPUFAs, but also affect other lipid levels and protect against several inflammatory diseases.


Assuntos
Dieta , Evolução Molecular , Ácidos Graxos Ômega-3/genética , Seleção Genética , Adaptação Fisiológica/genética , Agricultura , DNA Antigo/análise , Dessaturase de Ácido Graxo Delta-5 , Europa (Continente) , Ácidos Graxos Ômega-3/metabolismo , Geografia , Humanos , Fatores de Tempo
6.
Immunol Lett ; 181: 58-62, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27888057

RESUMO

Autoimmune diseases often share common susceptibility genes. Most genetic variants associated with susceptibility to systemic lupus erythematosus are also associated with other autoimmune diseases. The X-linked variant rs2294020 is positioned in exon 7 of the CCDC22 gene. The encoded protein functions in the regulation of NF-κB, a master regulator in immune response. The aim of this study is to investigate whether the rs2294020 polymorphism may be a general susceptibility factor for autoimmunity. We evaluated case-control association between the occurrence of rs2294020 and different autoimmune diseases, including new data for systemic lupus erythematosus and previous genome-wide association studies (GWAS) (though most did not analyse the X chromosome) of psoriasis, celiac disease, Crohn's disease, ulcerative colitis, multiple sclerosis, vitiligo, type-1 diabetes, rheumatoid arthritis, and ankylosing spondylitis. Cases from patients affected by amyotrophic lateral sclerosis and type-2 diabetes were also included in the study. We detected nominal significant associations of rs2294020 with systemic lupus erythematosus (additive model test: p=0.01), vitiligo (p=0.016), psoriasis (p=0.038), and in only one of two studies of multiple sclerosis (p=0.03). Our results suggest that rs2294020 is associated with the risk of several autoimmune diseases in European populations, specifically with diseases that present themselves, among else, in the skin.


Assuntos
Alelos , Doenças Autoimunes/genética , Genes Ligados ao Cromossomo X , Estudos de Associação Genética , Predisposição Genética para Doença , Lúpus Eritematoso Sistêmico/genética , Proteínas/genética , Adulto , Doenças Autoimunes/diagnóstico , Estudos de Casos e Controles , Éxons , Feminino , Genótipo , Humanos , Lúpus Eritematoso Sistêmico/diagnóstico , Masculino , Razão de Chances , Fenótipo , Polimorfismo de Nucleotídeo Único
7.
J Transl Med ; 14(1): 342, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27998272

RESUMO

Earlier this year, we described an analysis of mitochondrial DNA (mtDNA) variants in myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS) patients and healthy controls. We reported that there was no significant association of haplogroups or singe nucleotide polymorphisms (SNPs) with disease status. Nevertheless, a commentary about our paper appeared (Finsterer and Zarrouk-Mahjoub. J Transl Med14:182, 2016) that criticized the association of mtDNA haplogroups with ME/CFS, a conclusion that was absent from our paper. The aforementioned commentary also demanded experiments that were outside of the scope of our study, ones that we had suggested as follow-up studies. Because they failed to consult a published and cited report describing the cohorts we studied, the authors also cast aspersions on the method of selection of cases for inclusion. We reiterate that we observed statistically significant association of mtDNA variants with particular symptoms and their severity, though we observed no association with disease status.


Assuntos
DNA Mitocondrial/genética , Síndrome de Fadiga Crônica/genética , Mutação/genética , DNA Mitocondrial/sangue , Humanos
8.
Curr Opin Genet Dev ; 41: 130-139, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27710906

RESUMO

The advent of next-generation sequencing technology has allowed the collection of vast amounts of genetic variation data. A recurring discovery from studying larger and larger samples of individuals had been the extreme, previously unexpected, excess of very rare genetic variants, which has been shown to be mostly due to the recent explosive growth of human populations. Here, we review recent literature that inferred recent changes in population size in different human populations and with different methodologies, with many pointing to recent explosive growth, especially in European populations for which more data has been available. We also review the state-of-the-art methods and software for the inference of historical population size changes that lead to these discoveries. Finally, we discuss the implications of recent population growth on personalized genomics, on purifying selection in the non-equilibrium state it entails and, as a consequence, on the genetic architecture underlying complex disease and the performance of mapping methods in discovering rare variants that contribute to complex disease risk.


Assuntos
Genética Populacional , Genoma Humano/genética , Seleção Genética/genética , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Polimorfismo de Nucleotídeo Único , Crescimento Demográfico , População Branca/genética
9.
Hum Genet ; 135(10): 1127-43, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27377974

RESUMO

Cochin Jews form a small and unique community on the Malabar coast in southwest India. While the arrival time of any putative Jewish ancestors of the community has been speculated to have taken place as far back as biblical times (King Solomon's era), a Jewish community in the Malabar coast has been documented only since the 9th century CE. Here, we explore the genetic history of Cochin Jews by collecting and genotyping 21 community members and combining the data with that of 707 individuals from 72 other Indian, Jewish, and Pakistani populations, together with additional individuals from worldwide populations. We applied comprehensive genome-wide analyses based on principal component analysis, F ST, ADMIXTURE, identity-by-descent sharing, admixture linkage disequilibrium decay, haplotype sharing, allele sharing autocorrelation decay and contrasting the X chromosome with the autosomes. We find that, as reported by several previous studies, the genetics of Cochin Jews resembles that of local Indian populations. However, we also identify considerable Jewish genetic ancestry that is not present in any other Indian or Pakistani populations (with the exception of the Jewish Bene Israel, which we characterized previously). Combined, Cochin Jews have both Jewish and Indian ancestry. Specifically, we detect a significant recent Jewish gene flow into this community 13-22 generations (~470-730 years) ago, with contributions from Yemenite, Sephardi, and Middle-Eastern Jews, in accordance with historical records. Genetic analyses also point to high endogamy and a recent population bottleneck in this population, which might explain the increased prevalence of some recessive diseases in Cochin Jews.


Assuntos
Genética Populacional , Judeus/genética , Desequilíbrio de Ligação , Alelos , Povo Asiático/genética , Genoma Humano , Genótipo , Haplótipos , Humanos , Índia , Israel
10.
Mol Biol Evol ; 33(7): 1726-39, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27188529

RESUMO

Long chain polyunsaturated fatty acids (LCPUFA) are bioactive components of membrane phospholipids and serve as substrates for signaling molecules. LCPUFA can be obtained directly from animal foods or synthesized endogenously from 18 carbon precursors via the FADS2 coded enzyme. Vegans rely almost exclusively on endogenous synthesis to generate LCPUFA and we hypothesized that an adaptive genetic polymorphism would confer advantage. The rs66698963 polymorphism, a 22-bp insertion-deletion within FADS2, is associated with basal FADS1 expression, and coordinated induction of FADS1 and FADS2 in vitro. Here, we determined rs66698963 genotype frequencies from 234 individuals of a primarily vegetarian Indian population and 311 individuals from the US. A much higher I/I genotype frequency was found in Indians (68%) than in the US (18%). Analysis using 1000 Genomes Project data confirmed our observation, revealing a global I/I genotype of 70% in South Asians, 53% in Africans, 29% in East Asians, and 17% in Europeans. Tests based on population divergence, site frequency spectrum, and long-range haplotype consistently point to positive selection encompassing rs66698963 in South Asian, African, and some East Asian populations. Basal plasma phospholipid arachidonic acid (ARA) status was 8% greater in I/I compared with D/D individuals. The biochemical pathway product-precursor difference, ARA minus linoleic acid, was 31% and 13% greater for I/I and I/D compared with D/D, respectively. This study is consistent with previous in vitro data suggesting that the insertion allele enhances n-6 LCPUFA synthesis and may confer an adaptive advantage in South Asians because of the traditional plant-based diet practice.


Assuntos
Ácido Araquidônico/biossíntese , Ácidos Graxos Dessaturases/genética , Seleção Genética , Adulto , Alelos , Ácido Araquidônico/genética , Ácido Araquidônico/metabolismo , Bases de Dados de Ácidos Nucleicos , Dessaturase de Ácido Graxo Delta-5 , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados/genética , Ácidos Graxos Insaturados/metabolismo , Feminino , Frequência do Gene/genética , Variação Genética , Haplótipos , Humanos , Mutação INDEL , Masculino , Fosfolipídeos/genética , Fosfolipídeos/metabolismo , Polimorfismo de Nucleotídeo Único , Adulto Jovem
11.
Genome Res ; 26(5): 579-87, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27056836

RESUMO

The gradual accumulation of mutations by any of a number of mutational processes is a major driving force of divergence and evolution. Here, we investigate a potentially novel mutational process that is based on the activity of members of the AID/APOBEC family of deaminases. This gene family has been recently shown to introduce-in multiple types of cancer-enzyme-induced clusters of co-occurring somatic mutations caused by cytosine deamination. Going beyond somatic mutations, we hypothesized that APOBEC3-following its rapid expansion in primates-can introduce unique germline mutation clusters that can play a role in primate evolution. In this study, we tested this hypothesis by performing a comprehensive comparative genomic screen for APOBEC3-induced mutagenesis patterns across different hominids. We detected thousands of mutation clusters introduced along primate evolution which exhibit features that strongly fit the known patterns of APOBEC3G mutagenesis. These results suggest that APOBEC3G-induced mutations have contributed to the evolution of all genomes we studied. This is the first indication of site-directed, enzyme-induced genome evolution, which played a role in the evolution of both modern and archaic humans. This novel mutational mechanism exhibits several unique features, such as its higher tendency to mutate transcribed regions and regulatory elements and its ability to generate clusters of concurrent point mutations that all occur in a single generation. Our discovery demonstrates the exaptation of an anti-viral mechanism as a new source of genomic variation in hominids with a strong potential for functional consequences.


Assuntos
Desaminase APOBEC-3G/genética , Evolução Molecular , Hominidae/genética , Mutação , Animais , Humanos
12.
PLoS One ; 11(3): e0152056, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27010569

RESUMO

The Bene Israel Jewish community from West India is a unique population whose history before the 18th century remains largely unknown. Bene Israel members consider themselves as descendants of Jews, yet the identity of Jewish ancestors and their arrival time to India are unknown, with speculations on arrival time varying between the 8th century BCE and the 6th century CE. Here, we characterize the genetic history of Bene Israel by collecting and genotyping 18 Bene Israel individuals. Combining with 486 individuals from 41 other Jewish, Indian and Pakistani populations, and additional individuals from worldwide populations, we conducted comprehensive genome-wide analyses based on FST, principal component analysis, ADMIXTURE, identity-by-descent sharing, admixture linkage disequilibrium decay, haplotype sharing and allele sharing autocorrelation decay, as well as contrasted patterns between the X chromosome and the autosomes. The genetics of Bene Israel individuals resemble local Indian populations, while at the same time constituting a clearly separated and unique population in India. They are unique among Indian and Pakistani populations we analyzed in sharing considerable genetic ancestry with other Jewish populations. Putting together the results from all analyses point to Bene Israel being an admixed population with both Jewish and Indian ancestry, with the genetic contribution of each of these ancestral populations being substantial. The admixture took place in the last millennium, about 19-33 generations ago. It involved Middle-Eastern Jews and was sex-biased, with more male Jewish and local female contribution. It was followed by a population bottleneck and high endogamy, which can lead to increased prevalence of recessive diseases in this population. This study provides an example of how genetic analysis advances our knowledge of human history in cases where other disciplines lack the relevant data to do so.


Assuntos
Povo Asiático/genética , Genética Populacional , Judeus/genética , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Haplótipos , Humanos , Índia , Israel , Desequilíbrio de Ligação , Masculino , Paquistão
13.
J Transl Med ; 14: 19, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26791940

RESUMO

BACKGROUND: Mitochondrial dysfunction has been hypothesized to occur in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), a disease characterized by fatigue, cognitive difficulties, pain, malaise, and exercise intolerance. We investigated whether haplogroup, single nucleotide polymorphisms (SNPs), or heteroplasmy of mitochondrial DNA (mtDNA) were associated with health status and/or symptoms. METHODS: Illumina sequencing of PCR-amplified mtDNA was performed to analyze sequence and extent of heteroplasmy of mtDNAs of 193 cases and 196 age- and gender-matched controls from DNA samples collected by the Chronic Fatigue Initiative. Association testing was carried out to examine possible correlations of mitochondrial sequences with case/control status and symptom constellation and severity as reported by subjects on Short Form-36 and DePaul Symptom Questionnaires. RESULTS: No ME/CFS subject exhibited known disease-causing mtDNA mutations. Extent of heteroplasmy was low in all subjects. Although no association between mtDNA SNPs and ME/CFS vs. healthy status was observed, haplogroups J, U and H as well as eight SNPs in ME/CFS cases were significantly associated with individual symptoms, symptom clusters, or symptom severity. CONCLUSIONS: Analysis of mitochondrial genomes in ME/CFS cases indicates that individuals of a certain haplogroup or carrying specific SNPs are more likely to exhibit certain neurological, inflammatory, and/or gastrointestinal symptoms. No increase in susceptibility to ME/CFS of individuals carrying particular mitochondrial genomes or SNPs was observed.


Assuntos
DNA Mitocondrial/genética , Síndrome de Fadiga Crônica/genética , Mutação/genética , Adulto , Idoso , Alelos , Estudos de Coortes , Feminino , Estudos de Associação Genética , Marcadores Genéticos , Predisposição Genética para Doença , Haplótipos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Adulto Jovem
14.
Genome Res ; 26(2): 151-62, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26728717

RESUMO

An open question in the history of human migration is the identity of the earliest Eurasian populations that have left contemporary descendants. The Arabian Peninsula was the initial site of the out-of-Africa migrations that occurred between 125,000 and 60,000 yr ago, leading to the hypothesis that the first Eurasian populations were established on the Peninsula and that contemporary indigenous Arabs are direct descendants of these ancient peoples. To assess this hypothesis, we sequenced the entire genomes of 104 unrelated natives of the Arabian Peninsula at high coverage, including 56 of indigenous Arab ancestry. The indigenous Arab genomes defined a cluster distinct from other ancestral groups, and these genomes showed clear hallmarks of an ancient out-of-Africa bottleneck. Similar to other Middle Eastern populations, the indigenous Arabs had higher levels of Neanderthal admixture compared to Africans but had lower levels than Europeans and Asians. These levels of Neanderthal admixture are consistent with an early divergence of Arab ancestors after the out-of-Africa bottleneck but before the major Neanderthal admixture events in Europe and other regions of Eurasia. When compared to worldwide populations sampled in the 1000 Genomes Project, although the indigenous Arabs had a signal of admixture with Europeans, they clustered in a basal, outgroup position to all 1000 Genomes non-Africans when considering pairwise similarity across the entire genome. These results place indigenous Arabs as the most distant relatives of all other contemporary non-Africans and identify these people as direct descendants of the first Eurasian populations established by the out-of-Africa migrations.


Assuntos
Árabes/genética , População Negra/genética , Migração Humana , Homem de Neandertal/genética , População Branca/genética , Animais , Análise por Conglomerados , DNA Mitocondrial/genética , Frequência do Gene , Humanos , Hibridização Genética , Cadeias de Markov , Modelos Genéticos , Filogenia , Análise de Componente Principal , Catar , Análise de Sequência de DNA
15.
Genetics ; 202(1): 235-45, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26450922

RESUMO

The site frequency spectrum (SFS) and other genetic summary statistics are at the heart of many population genetic studies. Previous studies have shown that human populations have undergone a recent epoch of fast growth in effective population size. These studies assumed that growth is exponential, and the ensuing models leave an excess amount of extremely rare variants. This suggests that human populations might have experienced a recent growth with speed faster than exponential. Recent studies have introduced a generalized growth model where the growth speed can be faster or slower than exponential. However, only simulation approaches were available for obtaining summary statistics under such generalized models. In this study, we provide expressions to accurately and efficiently evaluate the SFS and other summary statistics under generalized models, which we further implement in a publicly available software. Investigating the power to infer deviation of growth from being exponential, we observed that adequate sample sizes facilitate accurate inference; e.g., a sample of 3000 individuals with the amount of data expected from exome sequencing allows observing and accurately estimating growth with speed deviating by ≥10% from that of exponential. Applying our inference framework to data from the NHLBI Exome Sequencing Project, we found that a model with a generalized growth epoch fits the observed SFS significantly better than the equivalent model with exponential growth (P-value [Formula: see text]). The estimated growth speed significantly deviates from exponential (P-value [Formula: see text]), with the best-fit estimate being of growth speed 12% faster than exponential.


Assuntos
Modelos Biológicos , Modelos Estatísticos , Crescimento Demográfico , Software , Simulação por Computador , Demografia , Europa (Continente) , Humanos
16.
Mol Biol Evol ; 33(2): 384-93, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26494842

RESUMO

In eutherian mammals, X-linked gene expression is normalized between XX females and XY males through the process of X chromosome inactivation (XCI). XCI results in silencing of transcription from one ChrX homolog per female cell. However, approximately 25% of human ChrX genes escape XCI to some extent and exhibit biallelic expression in females. The evolutionary basis of this phenomenon is not entirely clear, but high sequence conservation of XCI escapers suggests that purifying selection may directly or indirectly drive XCI escape at these loci. One hypothesis is that this signal results from contributions to developmental and physiological sex differences, but presently there is limited evidence supporting this model in humans. Another potential driver of this signal is selection for high and/or broad gene expression in both sexes, which are strong predictors of reduced nucleotide substitution rates in mammalian genes. Here, we compared purifying selection and gene expression patterns of human XCI escapers with those of X-inactivated genes in both sexes. When we accounted for the functional status of each ChrX gene's Y-linked homolog (or "gametolog"), we observed that XCI escapers exhibit greater degrees of purifying selection in the human lineage than X-inactivated genes, as well as higher and broader gene expression than X-inactivated genes across tissues in both sexes. These results highlight a significant role for gene expression in both sexes in driving purifying selection on XCI escapers, and emphasize these genes' potential importance in human disease.


Assuntos
Cromossomos Humanos X , Expressão Gênica , Genes Ligados ao Cromossomo X , Inativação do Cromossomo X , Feminino , Genoma Humano , Humanos , Masculino , Modelos Genéticos , Seleção Genética
17.
Genome Biol ; 16: 191, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26374288

RESUMO

BACKGROUND: The composition of bacteria in and on the human body varies widely across human individuals, and has been associated with multiple health conditions. While microbial communities are influenced by environmental factors, some degree of genetic influence of the host on the microbiome is also expected. This study is part of an expanding effort to comprehensively profile the interactions between human genetic variation and the composition of this microbial ecosystem on a genome- and microbiome-wide scale. RESULTS: Here, we jointly analyze the composition of the human microbiome and host genetic variation. By mining the shotgun metagenomic data from the Human Microbiome Project for host DNA reads, we gathered information on host genetic variation for 93 individuals for whom bacterial abundance data are also available. Using this dataset, we identify significant associations between host genetic variation and microbiome composition in 10 of the 15 body sites tested. These associations are driven by host genetic variation in immunity-related pathways, and are especially enriched in host genes that have been previously associated with microbiome-related complex diseases, such as inflammatory bowel disease and obesity-related disorders. Lastly, we show that host genomic regions associated with the microbiome have high levels of genetic differentiation among human populations, possibly indicating host genomic adaptation to environment-specific microbiomes. CONCLUSIONS: Our results highlight the role of host genetic variation in shaping the composition of the human microbiome, and provide a starting point toward understanding the complex interaction between human genetics and the microbiome in the context of human evolution and disease.


Assuntos
Variação Genética , Microbiota , Bactérias/classificação , Bactérias/isolamento & purificação , Genoma Humano , Humanos , Metagenômica
18.
J Hered ; 106(5): 666-71, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26268243

RESUMO

XWAS is a new software suite for the analysis of the X chromosome in association studies and similar genetic studies. The X chromosome plays an important role in human disease and traits of many species, especially those with sexually dimorphic characteristics. Special attention needs to be given to its analysis due to the unique inheritance pattern, which leads to analytical complications that have resulted in the majority of genome-wide association studies (GWAS) either not considering X or mishandling it with toolsets that had been designed for non-sex chromosomes. We hence developed XWAS to fill the need for tools that are specially designed for analysis of X. Following extensive, stringent, and X-specific quality control, XWAS offers an array of statistical tests of association, including: 1) the standard test between a SNP (single nucleotide polymorphism) and disease risk, including after first stratifying individuals by sex, 2) a test for a differential effect of a SNP on disease between males and females, 3) motivated by X-inactivation, a test for higher variance of a trait in heterozygous females as compared with homozygous females, and 4) for all tests, a version that allows for combining evidence from all SNPs across a gene. We applied the toolset analysis pipeline to 16 GWAS datasets of immune-related disorders and 7 risk factors of coronary artery disease, and discovered several new X-linked genetic associations. XWAS will provide the tools and incentive for others to incorporate the X chromosome into GWAS and similar studies in any species with an XX/XY system, hence enabling discoveries of novel loci implicated in many diseases and in their sexual dimorphism.


Assuntos
Cromossomos Humanos X/genética , Estudo de Associação Genômica Ampla/métodos , Software , Feminino , Humanos , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , Inativação do Cromossomo X
19.
BMC Genomics ; 16: 241, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25880738

RESUMO

BACKGROUND: The X chromosome plays an important role in human diseases and traits. However, few X-linked associations have been reported in genome-wide association studies, partly due to analytical complications and low statistical power. RESULTS: In this study, we propose tests of X-linked association that capitalize on variance heterogeneity caused by various factors, predominantly the process of X-inactivation. In the presence of X-inactivation, the expression of one copy of the chromosome is randomly silenced. Due to the consequent elevated randomness of expressed variants, females that are heterozygotes for a quantitative trait locus might exhibit higher phenotypic variance for that trait. We propose three tests that build on this phenomenon: 1) A test for inflated variance in heterozygous females; 2) A weighted association test; and 3) A combined test. Test 1 captures the novel signal proposed herein by directly testing for higher phenotypic variance of heterozygous than homozygous females. As a test of variance it is generally less powerful than standard tests of association that consider means, which is supported by extensive simulations. Test 2 is similar to a standard association test in considering the phenotypic mean, but differs by accounting for (rather than testing) the variance heterogeneity. As expected in light of X-inactivation, this test is slightly more powerful than a standard association test. Finally, test 3 further improves power by combining the results of the first two tests. We applied the these tests to the ARIC cohort data and identified a novel X-linked association near gene AFF2 with blood pressure, which was not significant based on standard association testing of mean blood pressure. CONCLUSIONS: Variance-based tests examine overdispersion, thereby providing a complementary type of signal to a standard association test. Our results point to the potential to improve power of detecting X-linked associations in the presence of variance heterogeneity.


Assuntos
Genes Ligados ao Cromossomo X , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Algoritmos , Alelos , Aterosclerose/etiologia , Aterosclerose/genética , Feminino , Heterozigoto , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Inativação do Cromossomo X
20.
PLoS One ; 10(3): e0121644, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25807536

RESUMO

Whole genome analysis in large samples from a single population is needed to provide adequate power to assess relative strengths of natural selection across different functional components of the genome. In this study, we analyzed next-generation sequencing data from 962 European Americans, and found that as expected approximately 60% of the top 1% of positive selection signals lie in intergenic regions, 33% in intronic regions, and slightly over 1% in coding regions. Several detailed functional annotation categories in intergenic regions showed statistically significant enrichment in positively selected loci when compared to the null distribution of the genomic span of ENCODE categories. There was a significant enrichment of purifying selection signals detected in enhancers, transcription factor binding sites, microRNAs and target sites, but not on lincRNA or piRNAs, suggesting different evolutionary constraints for these domains. Loci in "repressed or low activity regions" and loci near or overlapping the transcription start site were the most significantly over-represented annotations among the top 1% of signals for positive selection.


Assuntos
DNA Intergênico , Metagenômica , Polimorfismo de Nucleotídeo Único , Loci Gênicos , Humanos , Fases de Leitura Aberta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...