Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(22): 223002, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101362

RESUMO

Highly charged ions (HCIs) offer many opportunities for next-generation clock research due to the vast landscape of available electronic transitions in different charge states. The development of extreme ultraviolet frequency combs has enabled the search for clock transitions based on shorter wavelengths in HCIs. However, without initial knowledge of the energy of the clock states, these narrow transitions are difficult to be probed by lasers. In this Letter, we provide experimental observation and theoretical calculation of a long-lived electronic state in Nb-like Pb^{41+} that could be used as a clock state. With the mass spectrometer PENTATRAP, the excitation energy of this metastable state is directly determined as a mass difference at an energy of 31.2(8) eV, corresponding to one of the most precise relative mass determinations to date with a fractional uncertainty of 4×10^{-12}. This experimental result agrees within 1σ with two partially different ab initio multiconfiguration Dirac-Hartree-Fock calculations of 31.68(13) eV and 31.76(35) eV, respectively. With a calculated lifetime of 26.5(5.3) days, the transition from this metastable state to the ground state bears a quality factor of 1.1×10^{23} and allows for the construction of a HCI clock with a fractional frequency instability of <10^{-19}/sqrt[τ].

2.
Phys Rev Lett ; 131(22): 225101, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101383

RESUMO

Transient electron dynamics near the interface of counterstreaming plasmas at the onset of a relativistic collisionless shock (RCS) is investigated using particle-in-cell simulations. We identify a slingshotlike injection process induced by the drifting electric field sustained by the flowing focus of backward-moving electrons, which is distinct from the well-known stochastic acceleration. The flowing focus signifies the plasma kinetic transition from a preturbulent laminar motion to a chaotic turbulence. We find a characteristic correlation between the electron dynamics in the slingshot acceleration and the photon emission features. In particular, the integrated radiation from the RCS exhibits a counterintuitive nonmonotonic dependence of the photon polarization degree on the photon energy, which originates from a polarization degradation of relatively high-energy photons emitted by the slingshot-injected electrons. Our results demonstrate the potential of photon polarization as an essential information source in exploring intricate transient dynamics in RCSs with relevance for Earth-based plasma and astrophysical scenarios.

3.
Phys Rev Lett ; 131(1): 013201, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37478442

RESUMO

The ion momentum distribution in the x-ray-induced dissociative photoionization of molecules is investigated, treating the ionization analytically under the Born-Oppenheimer approximation and simulating numerically the ion motion via the Schrödinger equation. The ion-photoelectron entanglement transfers information of the electronic interference to the ion dynamics. As a consequence, the ion momentum distributions of dissociative molecular photoionization present Young's double-slit interference when the photoelectron emission angle is fixed. We demonstrate that double-slit interference signatures persist in the ion longitudinal momentum shift even when the information of the correlated photoelectron is lost, which is the case for heteronuclear molecules when an additional photoelectron recoil momentum arises due to the different ion masses. For the case of sequential double ionization, we show that double-slit interference in the ion dynamics can be utilized for coherent control of the molecular dynamics.

4.
Phys Rev Lett ; 130(26): 263602, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37450811

RESUMO

Quantum models based on few-mode master equations have been a central tool in the study of resonator quantum electrodynamics, extending the seminal single-mode Jaynes-Cummings model to include loss and multiple modes. Despite their broad application range, previous approaches within this framework have either relied on a Markov approximation or a fitting procedure. By combining ideas from pseudomode and quasinormal mode theory, we develop a certification criterion for multi-mode effects in lossy resonators. It is based on a witness observable, and neither requires a fitting procedure nor a Markov approximation. Using the resulting criterion, we demonstrate that such multi-mode effects are important for understanding previous experiments in x-ray cavity QED with Mössbauer nuclei and that they allow one to tune the nuclear ensemble properties.

5.
Phys Rev Lett ; 130(1): 015101, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36669225

RESUMO

Plasma current filamentation of an ultrarelativistic electron beam impinging on an overdense plasma is investigated, with emphasis on radiation-induced electron polarization. Particle-in-cell simulations provide the classification and in-depth analysis of three different regimes of the current filaments, namely, the normal filament, abnormal filament, and quenching regimes. We show that electron radiative polarization emerges during the instability along the azimuthal direction in the momentum space, which significantly varies across the regimes. We put forward an intuitive Hamiltonian model to trace the origin of the electron polarization dynamics. In particular, we discern the role of nonlinear transverse motion of plasma filaments, which induces asymmetry in radiative spin flips, yielding an accumulation of electron polarization. Our results break the conventional perception that quasisymmetric fields are inefficient for generating radiative spin-polarized beams, suggesting the potential of electron polarization as a source of new information on laboratory and astrophysical plasma instabilities.


Assuntos
Citoesqueleto , Elétrons , Movimento (Física) , Plasma
6.
Phys Rev Lett ; 129(24): 245001, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36563261

RESUMO

One of the most enduring and intensively studied problems of x-ray astronomy is the disagreement of state-of-the art theory and observations for the intensity ratio of two Fe XVII transitions of crucial value for plasma diagnostics, dubbed 3C and 3D. We unravel this conundrum at the PETRA III synchrotron facility by increasing the resolving power 2.5 times and the signal-to-noise ratio thousandfold compared with our previous work. The Lorentzian wings had hitherto been indistinguishable from the background and were thus not modeled, resulting in a biased line-strength estimation. The present experimental oscillator-strength ratio R_{exp}=f_{3C}/f_{3D}=3.51(2)_{stat}(7)_{sys} agrees with our state-of-the-art calculation of R_{th}=3.55(2), as well as with some previous theoretical predictions. To further rule out any uncertainties associated with the measured ratio, we also determined the individual natural linewidths and oscillator strengths of 3C and 3D transitions, which also agree well with the theory. This finally resolves the decades-old mystery of Fe XVII oscillator strengths.

7.
Eur Phys J A Hadron Nucl ; 58(10): 202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312005

RESUMO

The absolute atomic mass of 208 Pb has been determined with a fractional uncertainty of 7 × 10 - 11 by measuring the cyclotron-frequency ratio R of 208 Pb 41 + to 132 Xe 26 + with the high-precision Penning-trap mass spectrometer Pentatrap and computing the binding energies E Pb and E Xe of the missing 41 and 26 atomic electrons, respectively, with the ab initio fully relativistic multi-configuration Dirac-Hartree-Fock (MCDHF) method. R has been measured with a relative precision of 9 × 10 - 12 . E Pb and E Xe have been computed with an uncertainty of 9.1 eV and 2.1 eV, respectively, yielding 207.976 650 571 ( 14 )  u ( u = 9.314 941 024 2 ( 28 ) × 10 8  eV/c 2 ) for the 208 Pb neutral atomic mass. This result agrees within 1.2 σ with that from the Atomic-Mass Evaluation (AME) 2020, while improving the precision by almost two orders of magnitude. The new mass value directly improves the mass precision of 14 nuclides in the region of Z = 81-84 and is the most precise mass value with A > 200 . Thus, the measurement establishes a new region of reference mass values which can be used e.g. for precision mass determination of transuranium nuclides, including the superheavies.

9.
Phys Rev Lett ; 128(20): 203001, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35657898

RESUMO

A long-standing problem of fine-structure anomalies in muonic atoms is revisited by considering the splittings Δ2p=E_{2p_{3/2}}-E_{2p_{1/2}} in muonic ^{90}Zr, ^{120}Sn, and ^{208}Pb and Δ3p=E_{3p_{3/2}}-E_{3p_{1/2}} in muonic ^{208}Pb. State-of-the-art techniques from both nuclear and atomic physics are brought together in order to perform the most comprehensive to date calculations of nuclear-polarization energy shifts. Barring the more subtle case of µ-^{208}Pb, the results suggest that the dominant calculation uncertainty is much smaller than the persisting discrepancies between theory and experiment. We conclude that the resolution to the anomalies is likely to be rooted in refined quantum-electrodynamics corrections or even some other previously unaccounted-for contributions.

10.
Nature ; 606(7914): 479-483, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35705820

RESUMO

Quantum electrodynamics (QED) is one of the most fundamental theories of physics and has been shown to be in excellent agreement with experimental results1-5. In particular, measurements of the electron's magnetic moment (or g factor) of highly charged ions in Penning traps provide a stringent probe for QED, which allows testing of the standard model in the strongest electromagnetic fields6. When studying the differences between isotopes, many common QED contributions cancel owing to the identical electron configuration, making it possible to resolve the intricate effects stemming from the nuclear differences. Experimentally, however, this quickly becomes limited, particularly by the precision of the ion masses or the magnetic field stability7. Here we report on a measurement technique that overcomes these limitations by co-trapping two highly charged ions and measuring the difference in their g factors directly. We apply a dual Ramsey-type measurement scheme with the ions locked on a common magnetron orbit8, separated by only a few hundred micrometres, to coherently extract the spin precession frequency difference. We have measured the isotopic shift of the bound-electron g factor of the isotopes 20Ne9+ and 22Ne9+ to 0.56-parts-per-trillion (5.6 × 10-13) precision relative to their g factors, an improvement of about two orders of magnitude compared with state-of-the-art techniques7. This resolves the QED contribution to the nuclear recoil, accurately validates the corresponding theory and offers an alternative approach to set constraints on new physics.

11.
Phys Rev Lett ; 128(17): 174801, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35570418

RESUMO

Electron beam longitudinal polarization during the interaction with counterpropagating circularly polarized ultraintense laser pulses is investigated, while accounting for the anomalous magnetic moment of the electron. Although it is known that the helicity transfer from the laser photons to the electron beam is suppressed in linear and nonlinear Compton scattering processes, we show that the helicity transfer nevertheless can happen via an intermediate step of the electron radiative transverse polarization, phase matched with the driving field, followed up by spin rotation into the longitudinal direction as induced by the anomalous magnetic moment of the electron. With spin-resolved QED Monte Carlo simulations, we demonstrate the consequent helicity transfer from laser photons to the electron beam with a degree up to 10%, along with an electron radial polarization up to 65% after multiple photon emissions in a femtosecond timescale. This effect is detectable with currently achievable laser facilities, evidencing the role of the leading QED vertex correction to the electron anomalous magnetic moment in the polarization dynamics in ultrastrong laser fields.

12.
Phys Rev Lett ; 128(16): 162501, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35522485

RESUMO

Some nuclear isomers are known to store a large amount of energy over long periods of time, with a very high energy-to-mass ratio. Here, we describe a protocol to achieve the external control of the isomeric nuclear decay by using electron vortex beams whose wave function has been especially designed and reshaped on demand. Recombination of these electrons into the isomer's atomic shell can lead to the controlled release of the stored nuclear energy. On the example of ^{93m}Mo, we show theoretically that the use of tailored electron vortex beams increases the depletion by 4 orders of magnitude compared to the spontaneous nuclear decay of the isomer. Furthermore, specific orbitals can sustain an enhancement of the recombination cross section for vortex electron beams by as much as 6 orders of magnitude, providing a handle for manipulating the capture mechanism. These findings open new prospects for controlling the interplay between atomic and nuclear degrees of freedom, with potential energy-related and high-energy radiation source applications.

13.
Phys Rev Lett ; 128(18): 183201, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35594091

RESUMO

Recently two-center interference in single-photon molecular ionization was employed to observe a zeptosecond time delay due to the photon propagation of the internuclear distance in a molecule [Grundmann et al., Science 370, 339 (2020)SCIEAS0036-807510.1126/science.abb9318]. We investigate the possibility of a comparable nondipole time delay in tunneling ionization and decode the emerged time delay signal. With the here newly developed Coulomb-corrected nondipole molecular strong-field approximation, we derive and analyze the photoelectron momentum distribution, the signature of nondipole effects, and the role of the degeneracy of the molecular orbitals. We show that the ejected electron momentum shifts and interference fringes efficiently imprint both the molecule structure and laser parameters. The corresponding nondipole time delay value significantly deviates from that in single-photon ionization. In particular, when the two-center interference in the molecule is destructive, the time delay is independent of the bond length. We also identify the double-slit interference in tunneling ionization of atoms with nonzero angular momentum via a nondipole momentum shift.

14.
Phys Rev Lett ; 127(16): 165002, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34723572

RESUMO

Interaction of an ultrastrong short laser pulse with nonprepolarized near-critical density plasma is investigated in an ultrarelativistic regime, with an emphasis on the radiative spin polarization of ejected electrons. Our particle-in-cell simulations show explicit correlations between the angle resolved electron polarization and the structure and properties of the transient quasistatic plasma magnetic field. While the magnitude of the spin signal is the indicator of the magnetic field strength created by the longitudinal electron current, the asymmetry of electron polarization is found to gauge the islandlike magnetic distribution which emerges due to the transverse current induced by the laser wave front. Our studies demonstrate that the spin degree of freedom of ejected electrons could potentially serve as an efficient tool to retrieve the features of strong plasma fields.

15.
Nature ; 590(7846): 401-404, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33597757

RESUMO

Coherent control of quantum dynamics is key to a multitude of fundamental studies and applications1. In the visible or longer-wavelength domains, near-resonant light fields have become the primary tool with which to control electron dynamics2. Recently, coherent control in the extreme-ultraviolet range was demonstrated3, with a few-attosecond temporal resolution of the phase control. At hard-X-ray energies (above 5-10 kiloelectronvolts), Mössbauer nuclei feature narrow nuclear resonances due to their recoilless absorption and emission of light, and spectroscopy of these resonances is widely used to study the magnetic, structural and dynamical properties of matter4,5. It has been shown that the power and scope of Mössbauer spectroscopy can be greatly improved using various control techniques6-16. However, coherent control of atomic nuclei using suitably shaped near-resonant X-ray fields remains an open challenge. Here we demonstrate such control, and use the tunable phase between two X-ray pulses to switch the nuclear exciton dynamics between coherent enhanced excitation and coherent enhanced emission. We present a method of shaping single pulses delivered by state-of-the-art X-ray facilities into tunable double pulses, and demonstrate a temporal stability of the phase control on the few-zeptosecond timescale. Our results unlock coherent optical control for nuclei, and pave the way for nuclear Ramsey spectroscopy17 and spin-echo-like techniques, which should not only advance nuclear quantum optics18, but also help to realize X-ray clocks and frequency standards19. In the long term, we envision time-resolved studies of nuclear out-of-equilibrium dynamics, which is a long-standing challenge in Mössbauer science20.

16.
Phys Rev Lett ; 126(6): 064801, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33635713

RESUMO

Sources of high-energy photons have important applications in almost all areas of research. However, the photon flux and intensity of existing sources is strongly limited for photon energies above a few hundred keV. Here we show that a high-current ultrarelativistic electron beam interacting with multiple submicrometer-thick conducting foils can undergo strong self-focusing accompanied by efficient emission of gamma-ray synchrotron photons. Physically, self-focusing and high-energy photon emission originate from the beam interaction with the near-field transition radiation accompanying the beam-foil collision. This near field radiation is of amplitude comparable with the beam self-field, and can be strong enough that a single emitted photon can carry away a significant fraction of the emitting electron energy. After beam collision with multiple foils, femtosecond collimated electron and photon beams with number density exceeding that of a solid are obtained. The relative simplicity, unique properties, and high efficiency of this gamma-ray source open up new opportunities for both applied and fundamental research including laserless investigations of strong-field QED processes with a single electron beam.

17.
Phys Rev Lett ; 125(9): 093201, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32915594

RESUMO

A scheme to infer the temporal coherence of EUV frequency combs generated from intracavity high-order harmonic generation is put forward. The excitation dynamics of highly charged Mg-like ions, which interact with EUV pulse trains featuring different carrier-envelope-phase fluctuations, are simulated. While demonstrating the microscopic origin of the macroscopic equivalence between excitations induced by pulse trains and continuous-wave lasers, we show that the coherence time of the pulse train can be determined from the spectrum of the excitations. The scheme will provide a verification of the comb temporal coherence at timescales several orders of magnitude longer than current state of the art, and at the same time will enable high-precision spectroscopy of EUV transitions with a relative accuracy up to δω/ω∼10^{-17}.

18.
Sci Rep ; 10(1): 9439, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32523007

RESUMO

A scheme is put forward to generate fully coherent x-ray lasers based on population inversion in highly charged ions, created by fast inner-shell photoionization using broadband x-ray free-electron-laser (XFEL) pulses in a laser-produced plasma. Numerical simulations based on the Maxwell-Bloch theory show that one can obtain high-intensity, femtosecond x-ray pulses of relative bandwidths Δω/ω = 10-5-10-7, by orders of magnitude narrower than in x-ray free-electron-laser pulses for discrete wavelengths down to the sub-ångström regime. Such x-ray lasers can be applicable in the study of x-ray quantum optics and metrology, investigating nonlinear interactions between x-rays and matter, or in high-precision spectroscopy studies in laboratory astrophysics.

19.
Phys Rev Lett ; 124(22): 225001, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32567918

RESUMO

For more than 40 years, most astrophysical observations and laboratory studies of two key soft x-ray diagnostic 2p-3d transitions, 3C and 3D, in Fe XVII ions found oscillator strength ratios f(3C)/f(3D) disagreeing with theory, but uncertainties had precluded definitive statements on this much studied conundrum. Here, we resonantly excite these lines using synchrotron radiation at PETRA III, and reach, at a millionfold lower photon intensities, a 10 times higher spectral resolution, and 3 times smaller uncertainty than earlier work. Our final result of f(3C)/f(3D)=3.09(8)(6) supports many of the earlier clean astrophysical and laboratory observations, while departing by five sigmas from our own newest large-scale ab initio calculations, and excluding all proposed explanations, including those invoking nonlinear effects and population transfers.

20.
Phys Rev Lett ; 124(1): 014801, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31976698

RESUMO

Generation of circularly polarized (CP) and linearly polarized (LP) γ rays via the single-shot interaction of an ultraintense laser pulse with a spin-polarized counterpropagating ultrarelativistic electron beam has been investigated in nonlinear Compton scattering in the quantum radiation-dominated regime. For the process simulation, a Monte Carlo method is developed which employs the electron-spin-resolved probabilities for polarized photon emissions. We show efficient ways for the transfer of the electron polarization to the high-energy photon polarization. In particular, multi-GeV CP (LP) γ rays with polarization of up to about 95% can be generated by a longitudinally (transversely) spin-polarized electron beam, with a photon flux meeting the requirements of recent proposals for the vacuum birefringence measurement in ultrastrong laser fields. Such high-energy, high-brilliance, high-polarization γ rays are also beneficial for other applications in high-energy physics, and laboratory astrophysics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...