Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Cent Sci ; 9(2): 197-205, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36844501

RESUMO

Pressure sensitive adhesives (PSAs) are ubiquitous materials within a spectrum that span from office supplies to biomedical devices. Currently, the ability of PSAs to meet the needs of these diverse applications relies on trial-and-error mixing of assorted chemicals and polymers, which inherently entails property imprecision and variance over time due to component migration and leaching. Herein, we develop a precise additive-free PSA design platform that predictably leverages polymer network architecture to empower comprehensive control over adhesive performance. Utilizing the chemical universality of brush-like elastomers, we encode work of adhesion ranging 5 orders of magnitude with a single polymer chemistry by coordinating brush architectural parameters-side chain length and grafting density. Lessons from this design-by-architecture approach are essential for future implementation of AI machinery in molecular engineering of both cured and thermoplastic PSAs incorporated into everyday use.

2.
Mater Horiz ; 9(12): 3022-3030, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36128881

RESUMO

Polymeric networks are commonly used for various biomedical applications, from reconstructive surgery to wearable electronics. Some materials may be soft, firm, strong, or damping however, implementing all four properties into a single material to replicate the mechanical properties of tissue has been inaccessible. Herein, we present the A-g-B brush-like graft copolymer platform as a framework for fabrication of materials with independently tunable softness and firmness, capable of reaching a strength of ∼10 MPa on par with stress-supporting tissues such as blood vessel, muscle, and skin. These properties are maintained by architectural control, therefore diverse mechanical phenotypes are attainable for a variety of different chemistries. Utilizing this attribute, we demonstrate the capability of the A-g-B platform to enhance specific characteristics such as tackiness, damping, and moldability.


Assuntos
Elastômeros , Polímeros , Eletrônica
3.
ACS Cent Sci ; 8(6): 845-852, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35756385

RESUMO

Mechanically diverse polymer gels are commonly integrated into biomedical devices, soft robots, and tissue engineering scaffolds to perform distinct yet coordinated functions in wet environments. Such multigel systems are prone to volume fluctuations and shape distortions due to differential swelling driven by osmotic solvent redistribution. Living systems evade these issues by varying proximal tissue stiffness at nearly equal water concentration. However, this feature is challenging to replicate with synthetic gels: any alteration of cross-link density affects both the gel's swellability and mechanical properties. In contrast to the conventional coupling of physical properties, we report a strategy to tune the gel modulus independent of swelling ratio by regulating network strand flexibility with brushlike polymers. Chemically identical gels were constructed with a broad elastic modulus range at a constant solvent fraction by utilizing multidimensional network architectures. The general design-by-architecture framework is universally applicable to both organogels and hydrogels and can be further adapted to different practical applications.

4.
Sci Adv ; 8(3): eabm2469, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35061528

RESUMO

Injectable hydrogels are desired in many biomedical applications due to their minimally invasive deployment to the body and their ability to introduce drugs. However, current injectables suffer from mechanical mismatch with tissue, fragility, water expulsion, and high viscosity. To address these issues, we design brush-like macromolecules that concurrently provide softness, firmness, strength, fluidity, and swellability. The synthesized linear-bottlebrush-linear (LBL) copolymers facilitate improved injectability as the compact conformation of bottlebrush blocks results in low solution viscosity, while the thermoresponsive linear blocks permit prompt gelation at 37°C. The resulting hydrogels mimic the deformation response of supersoft tissues such as adipose and brain while withstanding deformations of 700% and precluding water expulsion upon gelation. Given their low cytotoxicity and mild inflammation in vivo, the developed materials will have vital implications for reconstructive surgery, tissue engineering, and drug delivery applications.

5.
ACS Appl Mater Interfaces ; 13(32): 38783-38791, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34348460

RESUMO

We report on a new class of magnetoactive elastomers (MAEs) based on bottlebrush polymer networks filled with carbonyl iron microparticles. By synergistically combining solvent-free, yet supersoft polymer matrices, with magnetic microparticles, we enable the design of composites that not only mimic the mechanical behavior of various biological tissues but also permit contactless regulation of this behavior by external magnetic fields. While the bottlebrush architecture allows to finely tune the matrix elastic modulus and strain-stiffening, the magnetically aligned microparticles generate a 3-order increase in shear modulus accompanied by a switch from a viscoelastic to elastic regime as evidenced by a ca. 10-fold drop of the damping factor. The developed method for MAE preparation through solvent-free coinjection of bottlebrush melts and magnetic particles provides additional advantages such as injection molding of various shapes and uniform particle distribution within MAE composites. The synergistic combination of bottlebrush network architecture and magnetically responsive microparticles empowers new opportunities in the design of actuators and active vibration insulation systems.

6.
Biomater Sci ; 9(15): 5160-5174, 2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34312627

RESUMO

Lack of long-term patency has hindered the clinical use of small-diameter prosthetic vascular grafts with the majority of these failures due to the development of neointimal hyperplasia. Previous studies by our laboratory revealed that small-diameter expanded polytetrafluoroethylene (ePTFE) grafts coated with antioxidant elastomers are a promising localized therapy to inhibit neointimal hyperplasia. This work is focused on the development of poly(diol-co-citrate-co-ascorbate) (POCA) elastomers with tunable properties for coating ePTFE vascular grafts. A bioactive POCA elastomer (@20 : 20 : 8, [citrate] : [diol] : [ascorbate]) coating was applied on a 1.5 mm diameter ePTFE vascular graft as the most promising therapeutic candidate for reducing neointimal hyperplasia. Surface ascorbate density on the POCA elastomer was increased to 67.5 ± 7.3 ng mg-1 cm-2. The mechanical, antioxidant, biodegradable, and biocompatible properties of POCA demonstrated desirable performance for in vivo use, inhibiting human aortic smooth muscle cell proliferation, while supporting human aortic endothelial cells. POCA elastomer coating number was adjusted by a modified spin-coating method to prepare small-diameter ePTFE vascular grafts similar to natural vessels. A significant reduction in neointimal hyperplasia was observed after implanting POCA-coated ePTFE vascular grafts in a guinea pig aortic interposition bypass graft model. POCA elastomer thus offers a new avenue that shows promise for use in vascular engineering to improve long-term patency rates by coating small-diameter ePTFE vascular grafts.


Assuntos
Elastômeros , Politetrafluoretileno , Animais , Prótese Vascular , Citratos , Ácido Cítrico , Células Endoteliais/patologia , Cobaias , Hiperplasia/prevenção & controle
7.
Nat Commun ; 12(1): 3961, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172721

RESUMO

Current materials used in biomedical devices do not match tissue's mechanical properties and leach various chemicals into the body. These deficiencies pose significant health risks that are further exacerbated by invasive implantation procedures. Herein, we leverage the brush-like polymer architecture to design and administer minimally invasive injectable elastomers that cure in vivo into leachable-free implants with mechanical properties matching the surrounding tissue. This strategy allows tuning curing time from minutes to hours, which empowers a broad range of biomedical applications from rapid wound sealing to time-intensive reconstructive surgery. These injectable elastomers support in vitro cell proliferation, while also demonstrating in vivo implant integrity with a mild inflammatory response and minimal fibrotic encapsulation.


Assuntos
Materiais Biomiméticos/administração & dosagem , Elastômeros/administração & dosagem , Procedimentos de Cirurgia Plástica/métodos , Animais , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Proliferação de Células/efeitos dos fármacos , Elastômeros/química , Elastômeros/farmacologia , Géis , Injeções , Camundongos , Polímeros/administração & dosagem , Polímeros/química , Polímeros/farmacologia , Ratos , Fatores de Tempo
8.
ACS Appl Mater Interfaces ; 13(2): 3278-3286, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33416300

RESUMO

Skin is a vital biological defense system that protects the body from physical harm with its unique mechanical properties attributed to the hierarchical organization of the protein scaffold. Developing a synthetic skinlike material has aroused great interest; however, replication of the skin's mechanical response, including anisotropic softness and strain-stiffening, is difficult to achieve. Here, to mimic the mechanical behaviors of skin, a reprocessable bottlebrush copolymer elastomer was designed with renewable and rigid cellulose as backbones; meanwhile, poly(n-butyl acrylate)-b-poly(methyl methacrylate) (PBA-b-PMMA) diblocks were designed as the grafted side chains. The so-made elastomers were subjected to a step-cyclic tensile deformation, by which the internal structures became oriented nanofibers and endowed stress-strain behaviors pretty much similar to those of the real skin. Overall, our research work currently undertaken would be of great importance in the development of a series of biomimetic skinlike polymer materials.


Assuntos
Acrilatos/química , Materiais Biomiméticos/química , Celulose/química , Elastômeros/química , Nanofibras/química , Polímeros/química , Polimetil Metacrilato/química , Animais , Fenômenos Biomecânicos , Biomimética , Humanos , Nanofibras/ultraestrutura , Pele/química , Resistência à Tração
9.
ACS Cent Sci ; 6(3): 413-419, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32232141

RESUMO

Softness and firmness are seemingly incompatible traits that synergize to create the unique soft-yet-firm tactility of living tissues pursued in soft robotics, wearable electronics, and plastic surgery. This dichotomy is particularly pronounced in tissues such as fat that are known to be both ultrasoft and ultrafirm. However, synthetically replicating this mechanical response remains elusive since ubiquitously employed soft gels are unable to concurrently reproduce tissue firmness. We have addressed the tissue challenge through the self-assembly of linear-bottlebrush-linear (LBL) block copolymers into thermoplastic elastomers. This hybrid molecular architecture delivers a hierarchical network organization with a cascade of deformation mechanisms responsible for initially low moduli followed by intense strain-stiffening. By bridging the firmness gap between gels and tissues, we have replicated the mechanics of fat, fetal membrane, spinal cord, and brain tissues. These solvent-free, nonleachable, and tissue-mimetic elastomers also show enhanced biocompatibility as demonstrated by cell proliferation studies, all of which are vital for the safety and longevity of future biomedical devices.

10.
ACS Macro Lett ; 8(5): 530-534, 2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35619373

RESUMO

ABA triblock copolymers composed of a poly(dimethylsiloxane) (PDMS) bottlebrush central block and linear poly(methyl methacrylate) (PMMA) terminal blocks self-assemble into a physical network of PDMS bottlebrush strands connected by PMMA spherical domains. A combination of small- and ultrasmall-angle X-ray scattering techniques was used to concurrently examine dimensions of PMMA spherical domains and PDMS bottlebrush strands both in the bulk and at the PMMA-PDMS interface. In agreement with scaling model predictions, the degrees of polymerization of the bottlebrush backbone (nbb) and PMMA block (nA) correlate with the measured PMMA domain size and area per molecule at the PMMA-PDMS interface as DA ∝ (nbbnA)1/3 and S ∝ nA2/3nbb-1/3, respectively. In the bulk, bottlebrush strands are extended due to steric repulsion between the side chains and unfavorable interactions between the different blocks. At the PMMA-PDMS interface with large curvature, packing constraints require additional bottlebrush backbone extension and alignment of side chains along the backbone in the direction perpendicular to the interface.

11.
Science ; 359(6383): 1509-1513, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29599240

RESUMO

Active camouflage is widely recognized as a soft-tissue feature, and yet the ability to integrate adaptive coloration and tissuelike mechanical properties into synthetic materials remains elusive. We provide a solution to this problem by uniting these functions in moldable elastomers through the self-assembly of linear-bottlebrush-linear triblock copolymers. Microphase separation of the architecturally distinct blocks results in physically cross-linked networks that display vibrant color, extreme softness, and intense strain stiffening on par with that of skin tissue. Each of these functional properties is regulated by the structure of one macromolecule, without the need for chemical cross-linking or additives. These materials remain stable under conditions characteristic of internal bodily environments and under ambient conditions, neither swelling in bodily fluids nor drying when exposed to air.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...