Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326467

RESUMO

Single electron spins bound to multi-phosphorus nuclear spin registers in silicon have demonstrated fast (0.8 ns) two-qubit [Formula: see text] gates and long spin relaxation times (~30 s). In these spin registers, when the donors are ionized, the nuclear spins remain weakly coupled to their environment, allowing exceptionally long coherence times. When the electron is present, the hyperfine interaction allows coupling of the spin and charge degrees of freedom for fast qubit operation and control. Here we demonstrate the use of the hyperfine interaction to enact electric dipole spin resonance to realize high-fidelity ([Formula: see text]%) initialization of all the nuclear spins within a four-qubit nuclear spin register. By controllably initializing the nuclear spins to [Formula: see text], we achieve single-electron qubit gate fidelities of F = 99.78 ± 0.07% (Clifford gate fidelities of 99.58 ± 0.14%), above the fault-tolerant threshold for the surface code with a coherence time of [Formula: see text].

2.
Nature ; 606(7915): 694-699, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35732762

RESUMO

The realization of controllable fermionic quantum systems via quantum simulation is instrumental for exploring many of the most intriguing effects in condensed-matter physics1-3. Semiconductor quantum dots are particularly promising for quantum simulation as they can be engineered to achieve strong quantum correlations. However, although simulation of the Fermi-Hubbard model4 and Nagaoka ferromagnetism5 have been reported before, the simplest one-dimensional model of strongly correlated topological matter, the many-body Su-Schrieffer-Heeger (SSH) model6-11, has so far remained elusive-mostly owing to the challenge of precisely engineering long-range interactions between electrons to reproduce the chosen Hamiltonian. Here we show that for precision-placed atoms in silicon with strong Coulomb confinement, we can engineer a minimum of six all-epitaxial in-plane gates to tune the energy levels across a linear array of ten quantum dots to realize both the trivial and the topological phases of the many-body SSH model. The strong on-site energies (about 25 millielectronvolts) and the ability to engineer gates with subnanometre precision in a unique staggered design allow us to tune the ratio between intercell and intracell electron transport to observe clear signatures of a topological phase with two conductance peaks at quarter-filling, compared with the ten conductance peaks of the trivial phase. The demonstration of the SSH model in a fermionic system isomorphic to qubits showcases our highly controllable quantum system and its usefulness for future simulations of strongly interacting electrons.

3.
Nature ; 571(7765): 371-375, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31316197

RESUMO

Electron spin qubits formed by atoms in silicon have large (tens of millielectronvolts) orbital energies and weak spin-orbit coupling, giving rise to isolated electron spin ground states with coherence times of seconds1,2. High-fidelity (more than 99.9 per cent) coherent control of such qubits has been demonstrated3, promising an attractive platform for quantum computing. However, inter-qubit coupling-which is essential for realizing large-scale circuits in atom-based qubits-has not yet been achieved. Exchange interactions between electron spins4,5 promise fast (gigahertz) gate operations with two-qubit gates, as recently demonstrated in gate-defined silicon quantum dots6-10. However, creating a tunable exchange interaction between two electrons bound to phosphorus atom qubits has not been possible until now. This is because it is difficult to determine the atomic distance required to turn the exchange interaction on and off while aligning the atomic circuitry for high-fidelity, independent spin readout. Here we report a fast (about 800 picoseconds) [Formula: see text] two-qubit exchange gate between phosphorus donor electron spin qubits in silicon using independent single-shot spin readout with a readout fidelity of about 94 per cent on a complete set of basis states. By engineering qubit placement on the atomic scale, we provide a route to the realization and efficient characterization of multi-qubit quantum circuits based on donor qubits in silicon.

4.
Nat Commun ; 9(1): 980, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29515115

RESUMO

Substitutional donor atoms in silicon are promising qubits for quantum computation with extremely long relaxation and dephasing times demonstrated. One of the critical challenges of scaling these systems is determining inter-donor distances to achieve controllable wavefunction overlap while at the same time performing high fidelity spin readout on each qubit. Here we achieve such a device by means of scanning tunnelling microscopy lithography. We measure anti-correlated spin states between two donor-based spin qubits in silicon separated by 16 ± 1 nm. By utilising an asymmetric system with two phosphorus donors at one qubit site and one on the other (2P-1P), we demonstrate that the exchange interaction can be turned on and off via electrical control of two in-plane phosphorus doped detuning gates. We determine the tunnel coupling between the 2P-1P system to be 200 MHz and provide a roadmap for the observation of two-electron coherent exchange oscillations.

5.
Phys Rev Lett ; 119(4): 046802, 2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-29341777

RESUMO

In this work we perform direct single-shot readout of the singlet-triplet states in exchange coupled electrons confined to precision-placed donor atoms in silicon. Our method takes advantage of the large energy splitting given by the Pauli-spin blockaded (2,0) triplet states, from which we can achieve a single-shot readout fidelity of 98.4±0.2%. We measure the triplet-minus relaxation time to be of the order 3 s at 2.5 T and observe its predicted decrease as a function of magnetic field, reaching 0.5 s at 1 T.

6.
Nanotechnology ; 22(5): 055703, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21178229

RESUMO

The role of Sb atoms present on the growth front during capping of InAs/InP (113)B quantum dots (QDs) is investigated by cross-sectional scanning tunnelling microscopy, atomic force microscopy, and photoluminescence spectroscopy. Direct capping of InAs QDs by InP results in partial disassembly of InAs QDs due to the As/P exchange occurring at the surface. However, when Sb atoms are supplied to the growth surface before InP capping layer overgrowth, the QDs preserve their uncapped shape, indicating that QD decomposition is suppressed. When GaAs(0.51)Sb(0.49) layers are deposited on the QDs, conformal growth is observed, despite the strain inhomogeneity existing at the growth front. This indicates that kinetics rather than the strain plays the major role during QD capping with Sb compounds. Thus Sb opens up a new way to control the shape of InAs QDs.

7.
Nanotechnology ; 21(21): 215705, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20431194

RESUMO

In this cross-sectional scanning tunnelling microscopy study we investigate the indium flush method as a means to control the height of self-assembled InGaAs quantum dots and wetting layers. The results show that application of an indium flush step during growth results in flattened dots and a reduced wetting layer of which the height can be precisely controlled by varying the height of the first capping layer.

8.
Rev Sci Instrum ; 80(12): 123704, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20059147

RESUMO

We have designed and built an optical system to collect light that is generated in the tunneling region of a low-temperature scanning tunneling microscope. The optical system consists of an in situ lens placed approximately 1.5 cm from the tunneling region and an ex situ optical lens system to analyze the emitted light, for instance, by directing the light into a spectrometer. As a demonstration, we measured tip induced photoluminescence spectra of a gold surface. Furthermore, we demonstrate that we can simultaneously record scanning tunneling microscope induced luminescence and topography of the surface both with atomic resolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...