Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mob DNA ; 14(1): 3, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37038191

RESUMO

BACKGROUND: Canonical telomeres (telomerase-synthetised) are readily forming G-quadruplexes (G4) on the G-rich strand. However, there are examples of non-canonical telomeres among eukaryotes where telomeric tandem repeats are invaded by specific retrotransposons. Drosophila melanogaster represents an extreme example with telomeres composed solely by three retrotransposons-Het-A, TAHRE and TART (HTT). Even though non-canonical telomeres often show strand biased G-distribution, the evidence for the G4-forming potential is limited. RESULTS: Using circular dichroism spectroscopy and UV absorption melting assay we have verified in vitro G4-formation in the HTT elements of D. melanogaster. Namely 3 in Het-A, 8 in TART and 2 in TAHRE. All the G4s are asymmetrically distributed as in canonical telomeres. Bioinformatic analysis showed that asymmetric distribution of potential quadruplex sequences (PQS) is common in telomeric retrotransposons in other Drosophila species. Most of the PQS are located in the gag gene where PQS density correlates with higher DNA sequence conservation and codon selection favoring G4-forming potential. The importance of G4s in non-canonical telomeres is further supported by analysis of telomere-associated retrotransposons from various eukaryotic species including green algae, Diplomonadida, fungi, insects and vertebrates. Virtually all analyzed telomere-associated retrotransposons contained PQS, frequently with asymmetric strand distribution. Comparison with non-telomeric elements showed independent selection of PQS-rich elements from four distinct LINE clades. CONCLUSION: Our findings of strand-biased G4-forming motifs in telomere-associated retrotransposons from various eukaryotic species support the G4-formation as one of the prerequisites for the recruitment of specific retrotransposons to chromosome ends and call for further experimental studies.

2.
DNA Repair (Amst) ; 119: 103402, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36116264

RESUMO

G-quadruplexes (G4s), a type of non-B DNA, play important roles in a wide range of molecular processes, including replication, transcription, and translation. Genome integrity relies on efficient and accurate DNA synthesis, and is compromised by various stressors, to which non-B DNA structures such as G4s can be particularly vulnerable. However, the impact of G4 structures on DNA polymerase fidelity is largely unknown. Using an in vitro forward mutation assay, we investigated the fidelity of human DNA polymerases delta (δ4, four-subunit), eta (η), and kappa (κ) during synthesis of G4 motifs representing those in the human genome. The motifs differ in sequence, topology, and stability, features that may affect DNA polymerase errors. Polymerase error rate hierarchy (δ4 < κ < Î·) is largely maintained during G4 synthesis. Importantly, we observed unique polymerase error signatures during synthesis of VEGF G4 motifs, stable G4s which form parallel topologies. These statistically significant errors occurred within, immediately flanking, and encompassing the G4 motif. For pol δ4, the errors were deletions, insertions and complex errors within the G4 or encompassing the G4 motif and surrounding sequence. For pol η, the errors occurred in 3' sequences flanking the G4 motif. For pol κ, the errors were frameshift mutations within G-tracts of the G4. Because these error signatures were not observed during synthesis of an antiparallel G4 and, to a lesser extent, a hybrid G4, we suggest that G4 topology and/or stability could influence polymerase fidelity. Using in silico analyses, we show that most polymerase errors are predicted to have minimal effects on predicted G4 stability. Our results provide a unique view of G4s not previously elucidated, showing that G4 motif heterogeneity differentially influences polymerase fidelity within the motif and flanking sequences. Thus, our study advances the understanding of how DNA polymerase errors contribute to G4 mutagenesis.


Assuntos
Quadruplex G , DNA/genética , Replicação do DNA , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Fator A de Crescimento do Endotélio Vascular/genética
3.
Bioinformatics ; 38(16): 4030-4032, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35781332

RESUMO

MOTIVATION: The role of repetitive DNA in the 3D organization of the interphase nucleus is a subject of intensive study. In studies of 3D nucleus organization, mutual contacts of various loci can be identified by Hi-C sequencing. Typical analyses use binning of read pairs by location to reduce noise. We use binning by repeat families instead to make similar conclusions about repeat regions. RESULTS: To achieve this, we combined Hi-C data, reference genome data and tools for repeat analysis into a Nextflow pipeline identifying and quantifying the contacts of specific repeat families. As an output, our pipeline produces heatmaps showing contact frequency and circular diagrams visualizing repeat contact localization. Using our pipeline with tomato data, we revealed the preferential homotypic interactions of ribosomal DNA, centromeric satellites and some LTR retrotransposon families and, as expected, little contact between organellar and nuclear DNA elements. While the pipeline can be applied to any eukaryotic genome, results in plants provide better coverage, since the built-in TE-greedy-nester software only detects tandems and LTR retrotransposons. Other repeats can be fed via GFF3 files. This pipeline represents a novel and reproducible way to analyze the role of repetitive elements in the 3D organization of genomes. AVAILABILITY AND IMPLEMENTATION: https://gitlab.fi.muni.cz/lexa/hic-te/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Análise de Dados , Genômica , Genômica/métodos , Genoma , Software , Retroelementos
4.
Bioessays ; 44(4): e2100242, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35112737

RESUMO

There is growing evidence of evolutionary genome plasticity. The evolution of repetitive DNA elements, the major components of most eukaryotic genomes, involves the amplification of various classes of mobile genetic elements, the expansion of satellite DNA, the transfer of fragments or entire organellar genomes and may have connections with viruses. In addition to various repetitive DNA elements, a plethora of large and small RNAs migrate within and between cells during individual development as well as during evolution and contribute to changes of genome structure and function. Such migration of DNA and RNA molecules often results in horizontal gene transfer, thus shaping the whole genomic network of interconnected species. Here, we propose that a high evolutionary dynamism of repetitive genome components is often related to the migration/movement of DNA or RNA molecules. We speculate that the cytoplasm is probably an ideal compartment for such evolutionary experiments.


Assuntos
Ácidos Nucleicos , Elementos de DNA Transponíveis , Eucariotos/genética , Evolução Molecular , Genômica/métodos , RNA/genética
5.
Biology (Basel) ; 10(4)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924086

RESUMO

Guanine quadruplexes (G4s) serve as regulators of replication, recombination and gene expression. G4 motifs have been recently identified in LTR retrotransposons, but their role in the retrotransposon life-cycle is yet to be understood. Therefore, we inserted G4s into the 3'UTR of Ty1his3-AI retrotransposon and measured the frequency of retrotransposition in yeast strains BY4741, Y00509 (without Pif1 helicase) and with G4-stabilization by N-methyl mesoporphyrin IX (NMM) treatment. We evaluated the impact of G4s on mRNA levels by RT-qPCR and products of reverse transcription by Southern blot analysis. We found that the presence of G4 inhibited Ty1his3-AI retrotransposition. The effect was stronger when G4s were on a transcription template strand which leads to reverse transcription interruption. Both NMM and Pif1p deficiency reduced the retrotransposition irrespective of the presence of a G4 motif in the Ty1his3-AI element. Quantity of mRNA and products of reverse transcription did not fully explain the impact of G4s on Ty1his3-AI retrotransposition indicating that G4s probably affect some other steps of the retrotransposon life-cycle (e.g., translation, VLP formation, integration). Our results suggest that G4 DNA conformation can tune the activity of mobile genetic elements that in turn contribute to shaping the eukaryotic genomes.

6.
Bioinformatics ; 36(20): 4991-4999, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-32663247

RESUMO

MOTIVATION: Transposable elements (TEs) in eukaryotes often get inserted into one another, forming sequences that become a complex mixture of full-length elements and their fragments. The reconstruction of full-length elements and the order in which they have been inserted is important for genome and transposon evolution studies. However, the accumulation of mutations and genome rearrangements over evolutionary time makes this process error-prone and decreases the efficiency of software aiming to recover all nested full-length TEs. RESULTS: We created software that uses a greedy recursive algorithm to mine increasingly fragmented copies of full-length LTR retrotransposons in assembled genomes and other sequence data. The software called TE-greedy-nester considers not only sequence similarity but also the structure of elements. This new tool was tested on a set of natural and synthetic sequences and its accuracy was compared to similar software. We found TE-greedy-nester to be superior in a number of parameters, namely computation time and full-length TE recovery in highly nested regions. AVAILABILITY AND IMPLEMENTATION: http://gitlab.fi.muni.cz/lexa/nested. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Retroelementos , Software , Algoritmos , Elementos de DNA Transponíveis , Evolução Molecular , Retroelementos/genética
7.
Front Plant Sci ; 11: 644, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508870

RESUMO

LTR retrotransposons constitute a significant part of plant genomes and their evolutionary dynamics play an important role in genome size changes. Current methods of LTR retrotransposon age estimation are based only on LTR (long terminal repeat) divergence. This has prompted us to analyze sequence similarity of LTRs in 25,144 LTR retrotransposons from fifteen plant species as well as formation of solo LTRs. We found that approximately one fourth of nested retrotransposons showed a higher LTR divergence than the pre-existing retrotransposons into which they had been inserted. Moreover, LTR similarity was correlated with LTR length. We propose that gene conversion can contribute to this phenomenon. Gene conversion prediction in LTRs showed potential converted regions in 25% of LTR pairs. Gene conversion was higher in species with smaller genomes while the proportion of solo LTRs did not change with genome size in analyzed species. The negative correlation between the extent of gene conversion and the abundance of solo LTRs suggests interference between gene conversion and ectopic recombination. Since such phenomena limit the traditional methods of LTR retrotransposon age estimation, we recommend an improved approach based on the exclusion of regions affected by gene conversion.

9.
Mob DNA ; 10: 50, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31871489

RESUMO

BACKGROUND: Nesting is common in LTR retrotransposons, especially in large genomes containing a high number of elements. RESULTS: We analyzed 12 plant genomes and obtained 1491 pairs of nested and original (pre-existing) LTR retrotransposons. We systematically analyzed mutual nesting of individual LTR retrotransposons and found that certain families, more often belonging to the Ty3/gypsy than Ty1/copia superfamilies, showed a higher nesting frequency as well as a higher preference for older copies of the same family ("autoinsertions"). Nested LTR retrotransposons were preferentially located in the 3'UTR of other LTR retrotransposons, while coding and regulatory regions (LTRs) are not commonly targeted. Insertions displayed a weak preference for palindromes and were associated with a strong positional pattern of higher predicted nucleosome occupancy. Deviation from randomness in target site choice was also found in 13,983 non-nested plant LTR retrotransposons. CONCLUSIONS: We reveal that nesting of LTR retrotransposons is not random. Integration is correlated with sequence composition, secondary structure and the chromatin environment. Insertion into retrotransposon positions with a low negative impact on family fitness supports the concept of the genome being viewed as an ecosystem of various elements.

10.
Genome Res ; 28(12): 1767-1778, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30401733

RESUMO

DNA conformation may deviate from the classical B-form in ∼13% of the human genome. Non-B DNA regulates many cellular processes; however, its effects on DNA polymerization speed and accuracy have not been investigated genome-wide. Such an inquiry is critical for understanding neurological diseases and cancer genome instability. Here, we present the first simultaneous examination of DNA polymerization kinetics and errors in the human genome sequenced with Single-Molecule Real-Time (SMRT) technology. We show that polymerization speed differs between non-B and B-DNA: It decelerates at G-quadruplexes and fluctuates periodically at disease-causing tandem repeats. Analyzing polymerization kinetics profiles, we predict and validate experimentally non-B DNA formation for a novel motif. We demonstrate that several non-B motifs affect sequencing errors (e.g., G-quadruplexes increase error rates), and that sequencing errors are positively associated with polymerase slowdown. Finally, we show that highly divergent G4 motifs have pronounced polymerization slowdown and high sequencing error rates, suggesting similar mechanisms for sequencing errors and germline mutations.


Assuntos
DNA/química , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Conformação de Ácido Nucleico , Análise de Sequência de DNA , Replicação do DNA , Quadruplex G , Genômica/métodos , Genômica/normas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Cinética , Mutação , Motivos de Nucleotídeos , Reprodutibilidade dos Testes , Análise de Sequência de DNA/métodos
11.
Ann Bot ; 122(7): 1085-1101, 2018 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-30032185

RESUMO

Background: The evolution of dioecious plants is occasionally accompanied by the establishment of sex chromosomes: both XY and ZW systems have been found in plants. Structural studies of sex chromosomes are now being followed up by functional studies that are gradually shedding light on the specific genetic and epigenetic processes that shape the development of separate sexes in plants. Scope: This review describes sex determination diversity in plants and the genetic background of dioecy, summarizes recent progress in the investigation of both classical and emerging model dioecious plants and discusses novel findings. The advantages of interspecies hybrids in studies focused on sex determination and the role of epigenetic processes in sexual development are also overviewed. Conclusions: We integrate the genic, genomic and epigenetic levels of sex determination and stress the impact of sex chromosome evolution on structural and functional aspects of plant sexual development. We also discuss the impact of dioecy and sex chromosomes on genome structure and expression.


Assuntos
Cromossomos de Plantas/genética , Evolução Molecular , Flores/crescimento & desenvolvimento , Desenvolvimento Vegetal/genética , Plantas/genética , Evolução Biológica , Flores/genética , Cromossomos Sexuais
12.
BMC Genomics ; 19(1): 184, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29510672

RESUMO

BACKGROUND: Many studies have shown that guanine-rich DNA sequences form quadruplex structures (G4) in vitro but there is scarce evidence of guanine quadruplexes in vivo. The majority of potential quadruplex-forming sequences (PQS) are located in transposable elements (TEs), especially close to promoters within long terminal repeats of plant LTR retrotransposons. RESULTS: In order to test the potential effect of G4s on retrotransposon expression, we cloned the long terminal repeats of selected maize LTR retrotransposons upstream of the lacZ reporter gene and measured its transcription and translation in yeast. We found that G4s had an inhibitory effect on translation in vivo since "mutants" (where guanines were replaced by adenines in PQS) showed higher expression levels than wild-types. In parallel, we confirmed by circular dichroism measurements that the selected sequences can indeed adopt G4 conformation in vitro. Analysis of RNA-Seq of polyA RNA in maize seedlings grown in the presence of a G4-stabilizing ligand (NMM) showed both inhibitory as well as stimulatory effects on the transcription of LTR retrotransposons. CONCLUSIONS: Our results demonstrate that quadruplex DNA located within long terminal repeats of LTR retrotransposons can be formed in vivo and that it plays a regulatory role in the LTR retrotransposon life-cycle, thus also affecting genome dynamics.


Assuntos
Quadruplex G , Genes Reporter , Genoma de Planta , Retroelementos , Saccharomyces cerevisiae/genética , Sequências Repetidas Terminais , Zea mays/genética , Sequenciamento de Nucleotídeos em Larga Escala , Saccharomyces cerevisiae/crescimento & desenvolvimento , Transcrição Gênica , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
13.
BMC Genomics ; 19(1): 153, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29458354

RESUMO

BACKGROUND: The rise and fall of the Y chromosome was demonstrated in animals but plants often possess the large evolutionarily young Y chromosome that is thought has expanded recently. Break-even points dividing expansion and shrinkage phase of plant Y chromosome evolution are still to be determined. To assess the size dynamics of the Y chromosome, we studied intraspecific genome size variation and genome composition of male and female individuals in a dioecious plant Silene latifolia, a well-established model for sex-chromosomes evolution. RESULTS: Our genome size data are the first to demonstrate that regardless of intraspecific genome size variation, Y chromosome has retained its size in S. latifolia. Bioinformatics study of genome composition showed that constancy of Y chromosome size was caused by Y chromosome DNA loss and the female-specific proliferation of recently active dominant retrotransposons. We show that several families of retrotransposons have contributed to genome size variation but not to Y chromosome size change. CONCLUSIONS: Our results suggest that the large Y chromosome of S. latifolia has slowed down or stopped its expansion. Female-specific proliferation of retrotransposons, enlarging the genome with exception of the Y chromosome, was probably caused by silencing of highly active retrotransposons in males and represents an adaptive mechanism to suppress degenerative processes in the haploid stage. Sex specific silencing of transposons might be widespread in plants but hidden in traditional hermaphroditic model plants.


Assuntos
Cromossomos de Plantas , DNA de Plantas , Evolução Molecular , Inativação Gênica , Retroelementos , Deleção de Sequência , Silene/genética , Composição de Bases , Mapeamento Cromossômico , Variações do Número de Cópias de DNA , Tamanho do Genoma , Genoma de Planta , Hibridização in Situ Fluorescente , Sequências Repetitivas de Ácido Nucleico , Silene/classificação , Sequências Repetidas Terminais
14.
Genes (Basel) ; 8(11)2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29104214

RESUMO

In contrast to animals, separate sexes and sex chromosomes in plants are very rare. Although the evolution of sex chromosomes has been the subject of numerous studies, the impact of repetitive sequences on sex chromosome architecture is not fully understood. New genomic approaches shed light on the role of satellites and transposable elements in the process of Y chromosome evolution. We discuss the impact of repetitive sequences on the structure and dynamics of sex chromosomes with specific focus on Rumex acetosa and Silene latifolia. Recent papers showed that both the expansion and shrinkage of the Y chromosome is influenced by sex-specific regulation of repetitive DNA spread. We present a view that the dynamics of Y chromosome formation is an interplay of genetic and epigenetic processes.

15.
Genome Biol Evol ; 9(1): 197-212, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28057732

RESUMO

Seabuckthorn (Hippophae rhamnoides) is a dioecious shrub commonly used in the pharmaceutical, cosmetic, and environmental industry as a source of oil, minerals and vitamins. In this study, we analyzed the transposable elements and satellites in its genome. We carried out Illumina DNA sequencing and reconstructed the main repetitive DNA sequences. For data analysis, we developed a new bioinformatics approach for advanced satellite DNA analysis and showed that about 25% of the genome consists of satellite DNA and about 24% is formed of transposable elements, dominated by Ty3/Gypsy and Ty1/Copia LTR retrotransposons. FISH mapping revealed X chromosome-accumulated, Y chromosome-specific or both sex chromosomes-accumulated satellites but most satellites were found on autosomes. Transposable elements were located mostly in the subtelomeres of all chromosomes. The 5S rDNA and 45S rDNA were localized on one autosomal locus each. Although we demonstrated the small size of the Y chromosome of the seabuckthorn and accumulated satellite DNA there, we were unable to estimate the age and extent of the Y chromosome degeneration. Analysis of dioecious relatives such as Shepherdia would shed more light on the evolution of these sex chromosomes.


Assuntos
Cromossomos de Plantas , Elementos de DNA Transponíveis , DNA de Plantas/genética , DNA Satélite , Hippophae/genética , Análise de Sequência de DNA/métodos , Cromossomos Sexuais , Evolução Molecular , Genoma de Planta , Filogenia
16.
Plant J ; 89(1): 58-72, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27599169

RESUMO

Sex determination in Rumex acetosa, a dioecious plant with a complex XY1 Y2 sex chromosome system (females are XX and males are XY1 Y2 ), is not controlled by an active Y chromosome but depends on the ratio between the number of X chromosomes and autosomes. To gain insight into the molecular mechanisms of sex determination, we generated a subtracted cDNA library enriched in genes specifically or predominantly expressed in female floral buds in early stages of development, when sex determination mechanisms come into play. In the present paper, we report the molecular and functional characterization of FEM32, a gene encoding a protein that shares a common architecture with proteins in different plants, animals, bacteria and fungi of the aerolysin superfamily; many of these function as ß pore-forming toxins. The expression analysis, assessed by northern blot, RT-PCR and in situ hybridization, demonstrates that this gene is specifically expressed in flowers in both early and late stages of development, although its transcripts accumulate much more in female flowers than in male flowers. The ectopic expression of FEM32 under both the constitutive promoter 35S and the flower-specific promoter AP3 in transgenic tobacco showed no obvious alteration in vegetative development but was able to alter floral organ growth and pollen fertility. The 35S::FEM32 and AP3::FEM32 transgenic lines showed a reduction in stamen development and pollen viability, as well as a diminution in fruit set, fruit development and seed production. Compared with other floral organs, pistil development was, however, enhanced in plants overexpressing FEM32. According to these effects, it is likely that FEM32 functions in Rumex by arresting stamen and pollen development during female flower development. The aerolysin-like pore-forming proteins of eukaryotes are mainly involved in defence mechanisms against bacteria, fungi and insects and are also involved in apoptosis and programmed cell death (PCD), a mechanism that could explain the role of FEM32 in Rumex sex determination.


Assuntos
Toxinas Bacterianas/genética , Flores/genética , Nicotiana/genética , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Proteínas Citotóxicas Formadoras de Poros/genética , Rumex/genética , Sequência de Aminoácidos , Toxinas Bacterianas/classificação , Flores/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/classificação , Plantas Geneticamente Modificadas , Pólen/genética , Pólen/crescimento & desenvolvimento , Proteínas Citotóxicas Formadoras de Poros/classificação , Rumex/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Homologia de Sequência de Aminoácidos , Nicotiana/crescimento & desenvolvimento
17.
Theor Appl Genet ; 129(12): 2267-2280, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27717955

RESUMO

KEY MESSAGE: This work discusses several selected topics of plant genetics and breeding in relation to the 150th anniversary of the seminal work of Gregor Johann Mendel. In 2015, we celebrated the 150th anniversary of the presentation of the seminal work of Gregor Johann Mendel. While Darwin's theory of evolution was based on differential survival and differential reproductive success, Mendel's theory of heredity relies on equality and stability throughout all stages of the life cycle. Darwin's concepts were continuous variation and "soft" heredity; Mendel espoused discontinuous variation and "hard" heredity. Thus, the combination of Mendelian genetics with Darwin's theory of natural selection was the process that resulted in the modern synthesis of evolutionary biology. Although biology, genetics, and genomics have been revolutionized in recent years, modern genetics will forever rely on simple principles founded on pea breeding using seven single gene characters. Purposeful use of mutants to study gene function is one of the essential tools of modern genetics. Today, over 100 plant species genomes have been sequenced. Mapping populations and their use in segregation of molecular markers and marker-trait association to map and isolate genes, were developed on the basis of Mendel's work. Genome-wide or genomic selection is a recent approach for the development of improved breeding lines. The analysis of complex traits has been enhanced by high-throughput phenotyping and developments in statistical and modeling methods for the analysis of phenotypic data. Introgression of novel alleles from landraces and wild relatives widens genetic diversity and improves traits; transgenic methodologies allow for the introduction of novel genes from diverse sources, and gene editing approaches offer possibilities to manipulate gene in a precise manner.


Assuntos
Genética/história , Pisum sativum/genética , Melhoramento Vegetal , Mapeamento Cromossômico , Variação Genética , Genoma de Planta , Genômica , História do Século XIX , História do Século XX , História do Século XXI , Fenótipo , Plantas Geneticamente Modificadas/genética , Locos de Características Quantitativas , Seleção Genética
18.
Mob Genet Elements ; 6(2): e1154636, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27141324

RESUMO

Acytota is a kingdom of life covering satellites, plasmids, transposable elements, viroids and viruses, all outside the conventional tree of life but satisfying most life definitions. This review focuses on some aspects of Acytota, their "genomes" and life styles, the dominance of transposable elements and their evolutionary influence on other life forms in order to vindicate the Acytota as a life kingdom no more polyphyletic than other kingdoms and its members no more parasitic than other life forms.

19.
J Biomol Struct Dyn ; 34(8): 1641-8, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26305806

RESUMO

There is a huge variety of RNA- and DNA-containing entities that multiply within and propagate between cells across all kingdoms of life, having no cells of their own. Apart from cellular organisms, these entities (viroids, plasmids, mobile elements and viruses among others) are the only ones with distinct genetic identities but which are not included in any traditional tree of life. We suggest to introduce or, rather, revive the distinct category of acellular organisms, Acytota, as an additional, undeservedly ignored full-fledged kingdom of life. Acytota are indispensable players in cellular life and its evolution. The six traditional kingdoms (Cytota) and Acytota together complete the classification of the biological world (Biota), leaving nothing beyond.


Assuntos
Evolução Biológica , Origem da Vida
20.
Chromosome Res ; 23(3): 561-70, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26474787

RESUMO

Structurally and functionally diverged sex chromosomes have evolved in many animals as well as in some plants. Sex chromosomes represent a specific genomic region(s) with locally suppressed recombination. As a consequence, repetitive sequences involving transposable elements, tandem repeats (satellites and microsatellites), and organellar DNA accumulate on the Y (W) chromosomes. In this paper, we review the main types of repetitive elements, their gathering on the Y chromosome, and discuss new findings showing that not only accumulation of various repeats in non-recombining regions but also opposite processes form Y chromosome. The aim of this review is also to discuss the mechanisms of repetitive DNA spread involving (retro) transposition, DNA polymerase slippage or unequal crossing-over, as well as modes of repeat removal by ectopic recombination. The intensity of these processes differs in non-recombining region(s) of sex chromosomes when compared to the recombining parts of genome. We also speculate about the relationship between heterochromatinization and the formation of heteromorphic sex chromosomes.


Assuntos
Cromossomos de Plantas , DNA de Plantas , Evolução Molecular , Plantas/genética , Sequências Repetitivas de Ácido Nucleico , Cromossomos Sexuais/genética , Elementos de DNA Transponíveis , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...