Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
mSphere ; 8(5): e0018523, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37698417

RESUMO

Staphylococcus aureus is a major pathogen in India causing community and nosocomial infections, but little is known about its molecular epidemiology and mechanisms of resistance in hospital settings. Here, we use whole-genome sequencing (WGS) to characterize 478 S. aureus clinical isolates (393 methicillin-resistant Staphylococcus aureus (MRSA) and 85 methicilin-sensitive Staphylococcus aureus (MSSA) collected from 17 sentinel sites across India between 2014 and 2019. Sequencing results confirmed that sequence type 22 (ST22) (142 isolates, 29.7%), ST239 (74 isolates, 15.48%), and ST772 (67 isolates, 14%) were the most common clones. An in-depth analysis of 175 clonal complex (CC) 22 Indian isolates identified two novel ST22 MRSA lineages, both Panton-Valentine leukocidin+, both resistant to fluoroquinolones and aminoglycosides, and one harboring the the gene for toxic shock syndrome toxin 1 (tst). A temporal analysis of 1797 CC22 global isolates from 14 different studies showed that the two Indian ST22 lineages shared a common ancestor in 1984 (95% highest posterior density [HPD]: 1982-1986), as well as evidence of transmission to other parts of the world. Moreover, the study also gives a comprehensive view of ST2371, a sublineage of CC22, as a new emerging lineage in India and describes it in relationship with the other Indian ST22 isolates. In addition, the retrospective identification of a putative outbreak of multidrug-resistant (MDR) ST239 from a single hospital in Bangalore that persisted over a period of 3 years highlights the need for the implementation of routine surveillance and simple infection prevention and control measures to reduce these outbreaks. To our knowledge, this is the first WGS study that characterized CC22 in India and showed that the Indian clones are distinct from the EMRSA-15 clone. Thus, with the improved resolution afforded by WGS, this study substantially contributed to our understanding of the global population of MRSA. IMPORTANCE The study conducted in India between 2014 and 2019 presents novel insights into the prevalence of MRSA in the region. Previous studies have characterized two dominant clones of MRSA in India, ST772 and ST239, using whole-genome sequencing. However, this study is the first to describe the third dominant clone, ST22, using the same approach. The ST22 Indian isolates were analyzed in-depth, leading to the discovery of two new sublineages of hospital-acquired Staphylococcus aureus in India, both carrying antimicrobial resistance genes and mutations, which limit treatment options for patients. One of the newly characterized sublineages, second Indian cluster, carries the tsst-1 virulence gene, increasing the risk of severe infections. The geographic spread of the two novel lineages, both within India and internationally, could pose a global public health threat. The study also sheds light on ST2371 in India, a single-locus variant of ST22. The identification of a putative outbreak of MDR ST239 in a single hospital in Bangalore emphasizes the need for routine surveillance and simple infection prevention and control measures to reduce these outbreaks. Overall, this study significantly contributes to our understanding of the global population of MRSA, thanks to the improved resolution afforded by WGS.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Staphylococcus aureus Resistente à Meticilina/genética , Estudos Retrospectivos , Índia/epidemiologia , Infecções Estafilocócicas/epidemiologia
2.
Microb Genom ; 9(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37227244

RESUMO

Staphylococcus aureus remains one of the leading causes of infections worldwide and a common cause of bacteraemia. However, studies documenting the epidemiology of S. aureus in South America using genomics are scarce. We hereby report on the largest genomic epidemiology study to date of both methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) in South America, conducted by the StaphNET-SA network. We characterised 404 genomes recovered from a prospective observational study of S. aureus bacteraemia in 58 hospitals from Argentina, Bolivia, Brazil, Paraguay and Uruguay between April and October 2019. We show that a minority of S. aureus isolates are phenotypically multi-drug resistant (5.2%), but more than a quarter are resistant to macrolide-lincosamide-streptogramin B (MLSb). MSSA were more genetically diverse than MRSA. Lower rates of associated antimicrobial resistance in community-associated(CA)-MRSA versus hospital-associated (HA)-MRSA were found in association with three S. aureus genotypes dominating the MRSA population: CC30-MRSA-IVc-t019-lukS/F-PV+, CC5-MRSA-IV-t002-lukS/F-PV- and CC8-MRSA-IVc-t008-lukS/F-PV+-COMER+. These are historically from a CA origin, carry on average fewer antimicrobial resistance determinants, and often lack key virulence genes. Surprisingly, CC398-MSSA-t1451-lukS/F-PV- related to the CC398 human-associated lineage is widely disseminated throughout the region, and is described here for the first time as the most prevalent MSSA lineage in South America. Moreover, CC398 strains carrying ermT (largely responsible for the MLSb resistance rates of MSSA strains: inducible iMLSb phenotype) and sh_fabI (related to triclosan resistance) were recovered from both CA and HA origin. The frequency of MRSA and MSSA lineages differed between countries but the most prevalent S. aureus genotypes are high-risk clones widely distributed in the South American region without a clear country-specific phylogeographical structure. Therefore, our findings underline the need for continuous genomic surveillance by regional networks such as StaphNET-SA. This article contains data hosted by Microreact.


Assuntos
Bacteriemia , Staphylococcus aureus Resistente à Meticilina , Sepse , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/genética , Infecções Estafilocócicas/epidemiologia , Staphylococcus aureus Resistente à Meticilina/genética , Bacteriemia/epidemiologia , Genômica , Brasil
3.
PLoS Negl Trop Dis ; 16(8): e0010716, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36026470

RESUMO

BACKGROUND: Salmonellosis causes significant morbidity and mortality in Africa. Information on lineages of invasive Salmonella circulating in Nigeria is sparse. METHODS: Salmonella enterica isolated from blood (n = 60) and cerebrospinal fluid (CSF, n = 3) between 2016 and 2020 from five tertiary hospitals in southwest Nigeria were antimicrobial susceptibility-tested and Illumina-sequenced. Genomes were analysed using publicly-available bioinformatic tools. RESULTS: Isolates and sequence types (STs) from blood were S. Typhi [ST1, n = 1 and ST2, n = 43] and invasive non-typhoidal Salmonella (iNTS) (S. Enteritidis [ST11, n = 7], S. Durham [ST10, n = 2], S. Rissen [ST8756, n = 2], S. Chester [ST2063, n = 1], S. Dublin [ST10, n = 1], S. Infantis [ST603, n = 1], S. Telelkebir [ST8757, n = 1] and S. Typhimurium [ST313, n = 1]). S. Typhi ST2 (n = 2) and S. Adabraka ST8757 (n = 1) were recovered from CSF. Most S. Typhi belonged to genotype 3.1.1 (n = 44), carried an IncY plasmid, had several antibiotic resistance genes (ARGs) including blaTEM-1 (n = 38), aph(6)-Id (n = 32), tet(A) (n = 33), sul2 (n = 32), dfrA14 (n = 30) as well as quinolone resistance-conferring gyrA_S83Y single-nucleotide polymorphisms (n = 37). All S. Enteritidis harboured aph(3")-Ib, blaTEM-1, catA1, dfrA7, sul1, sul2, tet(B) genes, and a single ARG, qnrB19, was detected in S. Telelkebir. Typhoidal toxins cdtB, pltA and pltB were detected in S. Typhi, Rissen, Chester, and Telelkebir. CONCLUSION: Most invasive salmonelloses in southwest Nigeria are vaccine-preventable infections due to multidrug-resistant, West African dominant S. Typhi lineage 3.1.1. Invasive NTS serovars, including some harbouring typhoidal toxin or resistance genes, represented a third of the isolates emphasizing the need for better diagnosis and surveillance.


Assuntos
Infecções por Salmonella , Febre Tifoide , Vacinas Tíficas-Paratíficas , Antibacterianos/farmacologia , Genômica , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1 , Testes de Sensibilidade Microbiana , Nigéria/epidemiologia , Infecções por Salmonella/epidemiologia , Salmonella enteritidis/genética , Febre Tifoide/epidemiologia
4.
Microbiology (Reading) ; 168(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35980376

RESUMO

Whole-genome sequencing (WGS) is finding important applications in the surveillance of antimicrobial resistance (AMR), providing the most granular data and broadening the scope of niches and locations that can be surveilled. A common but often overlooked application of WGS is to replace or augment reference laboratory services for AMR surveillance. WGS has supplanted traditional strain subtyping in many comprehensive reference laboratories and is now the gold standard for rapidly ruling isolates into or out of suspected outbreak clusters. These and other properties give WGS the potential to serve in AMR reference functioning where a reference laboratory did not hitherto exist. In this perspective, we describe how we have employed a WGS approach, and an academic-public health system collaboration, to provide AMR reference laboratory services in Nigeria, as a model for leapfrogging to national AMR surveillance.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Surtos de Doenças , Farmacorresistência Bacteriana/genética , Nigéria , Sequenciamento Completo do Genoma
5.
Clin Infect Dis ; 74(12): 2234-2237, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34626469

RESUMO

We report the persistent circulation of third-generation cephalosporin resistant Salmonella Typhi in Mumbai, linked to the acquisition and maintenance of a previously characterized IncX3 plasmid carrying the ESBL gene blaSHV-12 and the fluoroquinolone resistance gene qnrB7 in the genetic context of a triple mutant also associated with fluoroquinolone resistance.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Salmonella typhi , Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Fluoroquinolonas , Humanos , Índia/epidemiologia , Testes de Sensibilidade Microbiana , Salmonella typhi/efeitos dos fármacos , Salmonella typhi/genética , beta-Lactamases/genética
6.
Clin Infect Dis ; 73(Suppl_4): S283-S289, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34850831

RESUMO

Advanced genomics and sequencing technologies are increasingly becoming critical for global health applications such as pathogen and antimicrobial resistance (AMR) surveillance. Limited resources challenge capacity development in low- and middle-income countries (LMICs), with few countries having genomics facilities and adequately trained staff. Training research and public health experts who are directly involved in the establishment of such facilities offers an effective, but limited, solution to a growing need. Instead, training them to impart their knowledge and skills to others provides a sustainable model for scaling up the much needed capacity and capability for genomic sequencing and analysis locally with global impact. We designed and developed a Train-the-Trainer course integrating pedagogical aspects with genomic and bioinformatics activities. The course was delivered to 18 participants from 12 countries in Africa, Asia, and Latin America. A combination of teaching strategies culminating in a group project created a foundation for continued development at home institutions. Upon follow-up after 6 months, at least 40% of trainees had initiated training programs and collaborations to build capacity at local, national, and regional level. This work provides a framework for implementing a training and capacity building program for the application of genomics tools and resources in AMR surveillance.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Fortalecimento Institucional , Países em Desenvolvimento , Farmacorresistência Bacteriana/genética , Genômica , Humanos
7.
Clin Infect Dis ; 73(Suppl_4): S300-S307, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34850832

RESUMO

BACKGROUND: Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a threat to public health in India because of its high dissemination, mortality, and limited treatment options. Its genomic variability is reflected in the diversity of sequence types, virulence factors, and antimicrobial resistance (AMR) mechanisms. This study aims to characterize the clonal relationships and genetic mechanisms of resistance and virulence in CRKP isolates in India. MATERIALS AND METHODS: We characterized 344 retrospective K. pneumoniae clinical isolates collected from 8 centers across India collected in 2013-2019. Susceptibility to antibiotics was tested with VITEK 2. Capsular types, multilocus sequence type, virulence genes, AMR determinants, plasmid replicon types, and a single-nucleotide polymorphism phylogeny were inferred from their whole genome sequences. RESULTS: Phylogenetic analysis of the 325 Klebsiella isolates that passed quality control revealed 3 groups: K. pneumoniae sensu stricto (n = 307), K. quasipneumoniae (n = 17), and K. variicola (n = 1). Sequencing and capsular diversity analysis of the 307 K. pneumoniae sensu stricto isolates revealed 28 sequence types, 26 K-locus types, and 11 O-locus types, with ST231, KL51, and O1V2 being predominant. blaOXA-48-like and blaNDM-1/5 were present in 73.2% and 24.4% of isolates, respectively. The major plasmid replicon types associated with carbapenase genes were IncF (51.0%) and Col group (35.0%). CONCLUSION: Our study documents for the first time the genetic diversity of K and O antigens circulating in India. The results demonstrate the practical applicability of genomic surveillance and its utility in tracking the population dynamics of CRKP. It alerts us to the urgency for longitudinal surveillance of these transmissible lineages.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Genômica , Humanos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Filogenia , Estudos Retrospectivos , beta-Lactamases/genética
8.
Clin Infect Dis ; 73(Suppl_4): S316-S324, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34850834

RESUMO

BACKGROUND: Klebsiella pneumoniae is a critically important pathogen in the Philippines. Isolates are commonly resistant to at least 2 classes of antibiotics, yet mechanisms and spread of its resistance are not well studied. METHODS: A retrospective sequencing survey was performed on carbapenem-, extended spectrum beta-lactam-, and cephalosporin-resistant Klebsiella pneumoniae isolated at 20 antimicrobial resistance (AMR) surveillance sentinel sites from 2015 through 2017. We characterized 259 isolates using biochemical methods, antimicrobial susceptibility testing, and whole-genome sequencing (WGS). Known AMR mechanisms were identified. Potential outbreaks were investigated by detecting clusters from epidemiologic, phenotypic, and genome-derived data. RESULTS: Prevalent AMR mechanisms detected include blaCTX-M-15 (76.8%) and blaNDM-1 (37.5%). An epidemic IncFII(Yp) plasmid carrying blaNDM-1 was also detected in 46 isolates from 6 sentinel sites and 14 different sequence types (STs). This plasmid was also identified as the main vehicle of carbapenem resistance in 2 previously unrecognized local outbreaks of ST348 and ST283 at 2 different sentinel sites. A third local outbreak of ST397 was also identified but without the IncFII(Yp) plasmid. Isolates in each outbreak site showed identical STs and K- and O-loci, and similar resistance profiles and AMR genes. All outbreak isolates were collected from blood of children aged < 1 year. CONCLUSION: WGS provided a better understanding of the epidemiology of multidrug resistant Klebsiella in the Philippines, which was not possible with only phenotypic and epidemiologic data. The identification of 3 previously unrecognized Klebsiella outbreaks highlights the utility of WGS in outbreak detection, as well as its importance in public health and in implementing infection control programs.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Idoso , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Criança , Surtos de Doenças , Humanos , Recém-Nascido , Unidades de Terapia Intensiva Neonatal , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Filipinas/epidemiologia , Plasmídeos/genética , Estudos Retrospectivos , beta-Lactamases/genética
9.
Clin Infect Dis ; 73(Suppl_4): S290-S299, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34850835

RESUMO

BACKGROUND: Carbapenem-resistant Klebsiella pneumoniae (CRKP) is an emerging public health problem. This study explores the specifics of CRKP epidemiology in Colombia based on whole genome sequencing (WGS) of the National Reference Laboratory at Instituto Nacional de Salud (INS)'s 2013-2017 sample collection. METHODS: A total of 425 CRKP isolates from 21 departments were analyzed by HiSeq-X10®Illumina high-throughput sequencing. Bioinformatic analysis was performed, primarily using the pipelines developed collaboratively by the National Institute for Health Research Global Health Research Unit (GHRU) on Genomic Surveillance of Antimicrobial Resistance (AMR), and AGROSAVIA. RESULTS: Of the 425 CRKP isolates, 91.5% were carbapenemase-producing strains. The data support a recent expansion and the endemicity of CRKP in Colombia with the circulation of 7 high-risk clones, the most frequent being CG258 (48.39% of isolates). We identified genes encoding carbapenemases blaKPC-3, blaKPC-2, blaNDM-1, blaNDM-9, blaVIM-2, blaVIM-4, and blaVIM-24, and various mobile genetic elements (MGE). The virulence of CRKP isolates was low, but colibactin (clb3) was present in 25.2% of isolates, and a hypervirulent CRKP clone (CG380) was reported for the first time in Colombia. ST258, ST512, and ST4851 were characterized by low levels of diversity in the core genome (ANI > 99.9%). CONCLUSIONS: The study outlines complex CRKP epidemiology in Colombia. CG258 expanded clonally and carries specific carbapenemases in specific MGEs, while the other high-risk clones (CG147, CG307, and CG152) present a more diverse complement of carbapenemases. The specifics of the Colombian situation stress the importance of WGS-based surveillance to monitor evolutionary trends of sequence types (STs), MGE, and resistance and virulence genes.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Colômbia/epidemiologia , Genômica , Humanos , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Sequenciamento Completo do Genoma , beta-Lactamases/genética
10.
Clin Infect Dis ; 73(Suppl_4): S258-S266, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34850836

RESUMO

Antimicrobial resistance (AMR) is considered a global threat, and novel drug discovery needs to be complemented with systematic and standardized epidemiological surveillance. Surveillance data are currently generated using phenotypic characterization. However, due to poor scalability, this approach does little for true epidemiological investigations. There is a strong case for whole-genome sequencing (WGS) to enhance the phenotypic data. To establish global AMR surveillance using WGS, we developed a laboratory implementation approach that we applied within the NIHR Global Health Research Unit (GHRU) on Genomic Surveillance of Antimicrobial Resistance. In this paper, we outline the laboratory implementation at 4 units: Colombia, India, Nigeria, and the Philippines. The journey to embedding WGS capacity was split into 4 phases: Assessment, Assembly, Optimization, and Reassessment. We show that on-boarding WGS capabilities can greatly enhance the real-time processing power within regional and national AMR surveillance initiatives, despite the high initial investment in laboratory infrastructure and maintenance. Countries looking to introduce WGS as a surveillance tool could begin by sequencing select Global Antimicrobial Resistance Surveillance System (GLASS) priority pathogens that can demonstrate the standardization and impact genome sequencing has in tackling AMR.


Assuntos
Antibacterianos , Laboratórios , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana/genética , Genômica , Humanos , Sequenciamento Completo do Genoma
11.
Clin Infect Dis ; 73(Suppl_4): S308-S315, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34850837

RESUMO

BACKGROUND: Klebsiella pneumoniae is a World Health Organization high-priority antibiotic-resistant pathogen. However, little is known about Klebsiella lineages circulating in Nigeria. METHODS: We performed whole-genome sequencing (WGS) of 141 Klebsiella isolated between 2016 and 2018 from clinical specimens at 3 antimicrobial-resistance (AMR) sentinel surveillance tertiary hospitals in southwestern Nigeria. We conducted in silico multilocus sequence typing; AMR gene, virulence gene, plasmid, and K and O loci profiling; as well as phylogenetic analyses, using publicly available tools and Nextflow pipelines. RESULTS: Phylogenetic analysis revealed that the majority of the 134 K. pneumoniae and 5 K. quasipneumoniae isolates from Nigeria characterized are closely related to globally disseminated multidrug-resistant clones. Of the 39 K. pneumoniae sequence types (STs) identified, the most common were ST307 (15%), ST5241 (12%), ST15 (~9%), and ST25 (~6%). ST5241, 1 of 10 novel STs detected, is a single locus variant of ST636 carrying dfrA14, tetD, qnrS, and oqxAB resistance genes. The extended-spectrum ß-lactamase (ESBL) gene blaCTX_M-15 was seen in 72% of K. pneumoniae genomes, while 8% encoded a carbapenemase. No isolate carried a combination of carbapenemase-producing genes. Four likely outbreak clusters from 1 facility, within STs 17, 25, 307, and 5241, were ESBL but not carbapenemase-bearing clones. CONCLUSIONS: This study uncovered known and novel K. pneumoniae lineages circulating in 3 hospitals in Southwest Nigeria that include multidrug-resistant ESBL producers. Carbapenemase-producing isolates remain uncommon. WGS retrospectively identified outbreak clusters, pointing to the value of genomic approaches in AMR surveillance for improving infection prevention and control in Nigerian hospitals.


Assuntos
Infecções por Klebsiella , Klebsiella , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Células Clonais , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Klebsiella/genética , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Nigéria/epidemiologia , Filogenia , Estudos Retrospectivos , beta-Lactamases/genética
12.
Clin Infect Dis ; 73(Suppl_4): S325-S335, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34850838

RESUMO

BACKGROUND: Klebsiella species, including the notable pathogen K. pneumoniae, are increasingly associated with antimicrobial resistance (AMR). Genome-based surveillance can inform interventions aimed at controlling AMR. However, its widespread implementation requires tools to streamline bioinformatic analyses and public health reporting. METHODS: We developed the web application Pathogenwatch, which implements analytics tailored to Klebsiella species for integration and visualization of genomic and epidemiological data. We populated Pathogenwatch with 16 537 public Klebsiella genomes to enable contextualization of user genomes. We demonstrated its features with 1636 genomes from 4 low- and middle-income countries (LMICs) participating in the NIHR Global Health Research Unit (GHRU) on AMR. RESULTS: Using Pathogenwatch, we found that GHRU genomes were dominated by a small number of epidemic drug-resistant clones of K. pneumoniae. However, differences in their distribution were observed (eg, ST258/512 dominated in Colombia, ST231 in India, ST307 in Nigeria, ST147 in the Philippines). Phylogenetic analyses including public genomes for contextualization enabled retrospective monitoring of their spread. In particular, we identified hospital outbreaks, detected introductions from abroad, and uncovered clonal expansions associated with resistance and virulence genes. Assessment of loci encoding O-antigens and capsule in K. pneumoniae, which represent possible vaccine candidates, showed that 3 O-types (O1-O3) represented 88.9% of all genomes, whereas capsule types were much more diverse. CONCLUSIONS: Pathogenwatch provides a free, accessible platform for real-time analysis of Klebsiella genomes to aid surveillance at local, national, and global levels. We have improved representation of genomes from GHRU participant countries, further facilitating ongoing surveillance.


Assuntos
Infecções por Klebsiella , Klebsiella , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano , Genômica , Humanos , Klebsiella/genética , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae , Filogenia , Estudos Retrospectivos , beta-Lactamases/genética
13.
Genome Res ; 30(8): 1154-1169, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32817236

RESUMO

The characterization of de novo mutations in regions of high sequence and structural diversity from whole-genome sequencing data remains highly challenging. Complex structural variants tend to arise in regions of high repetitiveness and low complexity, challenging both de novo assembly, in which short reads do not capture the long-range context required for resolution, and mapping approaches, in which improper alignment of reads to a reference genome that is highly diverged from that of the sample can lead to false or partial calls. Long-read technologies can potentially solve such problems but are currently unfeasible to use at scale. Here we present Corticall, a graph-based method that combines the advantages of multiple technologies and prior data sources to detect arbitrary classes of genetic variant. We construct multisample, colored de Bruijn graphs from short-read data for all samples, align long-read-derived haplotypes and multiple reference data sources to restore graph connectivity information, and call variants using graph path-finding algorithms and a model for simultaneous alignment and recombination. We validate and evaluate the approach using extensive simulations and use it to characterize the rate and spectrum of de novo mutation events in 119 progeny from four Plasmodium falciparum experimental crosses, using long-read data on the parents to inform reconstructions of the progeny and to detect several known and novel nonallelic homologous recombination events.


Assuntos
Genoma de Protozoário/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação/genética , Plasmodium falciparum/genética , Sequenciamento Completo do Genoma/métodos , Algoritmos , Sequência de Bases , Variação Genética/genética , Alinhamento de Sequência , Análise de Sequência de DNA/métodos , Software
14.
Malar J ; 19(1): 181, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32404110

RESUMO

BACKGROUND: Long regarded as an epicenter of drug-resistant malaria, Southeast Asia continues to provide new challenges to the control of Plasmodium falciparum malaria. Recently, resistance to the artemisinin combination therapy partner drug piperaquine has been observed in multiple locations across Southeast Asia. Genetic studies have identified single nucleotide polymorphisms as well as copy number variations in the plasmepsin 2 and plasmepsin 3 genes, which encode haemoglobin-degrading proteases that associate with clinical and in vitro piperaquine resistance. RESULTS: To accurately and quickly determine the presence of copy number variations in the plasmepsin 2/3 genes in field isolates, this study developed a quantitative PCR assay using TaqMan probes. Copy number estimates were validated using a separate SYBR green-based quantitative PCR assay as well as a novel PCR-based breakpoint assay to detect the hybrid gene product. Field samples from 2012 to 2015 across three sites in Cambodia were tested using DNA extracted from dried blood spots and whole blood to monitor the extent of plasmepsin 2/3 gene amplifications, as well as amplifications in the multidrug resistance transporter 1 gene (pfmdr1), a marker of mefloquine resistance. This study found high concordance across all methods of copy number detection. For samples derived from dried blood spots, a success rate greater than 80% was found in each assay, with more recent samples performing better. Evidence of extensive plasmepsin 2/3 copy number amplifications was observed in Pursat (94%, 2015) (Western Cambodia) and Preah Vihear (87%, 2014) (Northern Cambodia), and lower levels in Ratanakiri (16%, 2014) (Eastern Cambodia). A shift was observed from two copies of plasmepsin 2 in Pursat in 2013 to three copies in 2014-2015 (25% to 64%). Pfmdr1 amplifications were absent in all samples from Preah Vihear and Ratanakiri in 2014 and absent in Pursat in 2015. CONCLUSIONS: The multiplex TaqMan assay is a robust tool for monitoring both plasmepsin 2/3 and pfmdr1 copy number variations in field isolates, and the SYBR-green and breakpoint assays are useful for monitoring plasmepsin 2/3 amplifications. This study shows increasing levels of plasmepsin 2 copy numbers across Cambodia from 2012 to 2015 and a complete reversion of multicopy pfmdr1 parasites to single copy parasites in all study locations.


Assuntos
Antimaláricos/farmacologia , Ácido Aspártico Endopeptidases/genética , Variações do Número de Cópias de DNA/genética , Resistência a Medicamentos/genética , Técnicas Genéticas/instrumentação , Plasmodium falciparum/genética , Quinolinas/farmacologia
15.
Elife ; 82019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30938289

RESUMO

For countries aiming for malaria elimination, travel of infected individuals between endemic areas undermines local interventions. Quantifying parasite importation has therefore become a priority for national control programs. We analyzed epidemiological surveillance data, travel surveys, parasite genetic data, and anonymized mobile phone data to measure the spatial spread of malaria parasites in southeast Bangladesh. We developed a genetic mixing index to estimate the likelihood of samples being local or imported from parasite genetic data and inferred the direction and intensity of parasite flow between locations using an epidemiological model integrating the travel survey and mobile phone calling data. Our approach indicates that, contrary to dogma, frequent mixing occurs in low transmission regions in the southwest, and elimination will require interventions in addition to reducing imported infections from forested regions. Unlike risk maps generated from clinical case counts alone, therefore, our approach distinguishes areas of frequent importation as well as high transmission.


Assuntos
Doenças Transmissíveis Importadas/epidemiologia , Migração Humana , Malária/epidemiologia , Plasmodium/isolamento & purificação , Topografia Médica , Bangladesh/epidemiologia , Genótipo , Humanos , Incidência , Plasmodium/classificação , Plasmodium/genética
16.
Wellcome Open Res ; 3: 52, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29862326

RESUMO

Background: Although thousands of clinical isolates of Plasmodium falciparum are being sequenced and analysed by short read technology, the data do not resolve the highly variable subtelomeric regions of the genomes that contain polymorphic gene families involved in immune evasion and pathogenesis. There is also no current standard definition of the boundaries of these variable subtelomeric regions. Methods: Using long-read sequence data (Pacific Biosciences SMRT technology), we assembled and annotated the genomes of 15 P. falciparum isolates, ten of which are newly cultured clinical isolates. We performed comparative analysis of the entire genome with particular emphasis on the subtelomeric regions and the internal var genes clusters.   Results: The nearly complete sequence of these 15 isolates has enabled us to define a highly conserved core genome, to delineate the boundaries of the subtelomeric regions, and to compare these across isolates. We found highly structured variable regions in the genome. Some exported gene families purportedly involved in release of merozoites show copy number variation. As an example of ongoing genome evolution, we found a novel CLAG gene in six isolates.  We also found a novel gene that was relatively enriched in the South East Asian isolates compared to those from Africa. Conclusions: These 15 manually curated new reference genome sequences with their nearly complete subtelomeric regions and fully assembled genes are an important new resource for the malaria research community. We report the overall conserved structure and pattern of important gene families and the more clearly defined subtelomeric regions.

17.
Nucleic Acids Res ; 45(4): 1889-1901, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-27994033

RESUMO

For reasons that remain unknown, the Plasmodium falciparum genome has an exceptionally high AT content compared to other Plasmodium species and eukaryotes in general - nearly 80% in coding regions and approaching 90% in non-coding regions. Here, we examine how this phenomenon relates to genome-wide patterns of de novo mutation. Mutation accumulation experiments were performed by sequential cloning of six P. falciparum isolates growing in human erythrocytes in vitro for 4 years, with 279 clones sampled for whole genome sequencing at different time points. Genome sequence analysis of these samples revealed a significant excess of G:C to A:T transitions compared to other types of nucleotide substitution, which would naturally cause AT content to equilibrate close to the level seen across the P. falciparum reference genome (80.6% AT). These data also uncover an extremely high rate of small indel mutation relative to other species, primarily associated with repetitive AT-rich sequences, in addition to larger-scale structural rearrangements focused in antigen-coding var genes. In conclusion, high AT content in P. falciparum is driven by a systematic mutational bias and ultimately leads to an unusual level of microstructural plasticity, raising the question of whether this contributes to adaptive evolution.


Assuntos
Composição de Bases , Genoma de Protozoário , Mutação , Plasmodium falciparum/genética , Regulação da Expressão Gênica , Mutação INDEL , Taxa de Mutação , Filogenia , Plasmodium falciparum/classificação , Polimorfismo de Nucleotídeo Único , Recombinação Genética , Reprodutibilidade dos Testes
18.
Malar J ; 15(1): 597, 2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-27998271

RESUMO

BACKGROUND: Translating genomic technologies into healthcare applications for the malaria parasite Plasmodium falciparum has been limited by the technical and logistical difficulties of obtaining high quality clinical samples from the field. Sampling by dried blood spot (DBS) finger-pricks can be performed safely and efficiently with minimal resource and storage requirements compared with venous blood (VB). Here, the use of selective whole genome amplification (sWGA) to sequence the P. falciparum genome from clinical DBS samples was evaluated, and the results compared with current methods that use leucodepleted VB. METHODS: Parasite DNA with high (>95%) human DNA contamination was selectively amplified by Phi29 polymerase using short oligonucleotide probes of 8-12 mers as primers. These primers were selected on the basis of their differential frequency of binding the desired (P. falciparum DNA) and contaminating (human) genomes. RESULTS: Using sWGA method, clinical samples from 156 malaria patients, including 120 paired samples for head-to-head comparison of DBS and leucodepleted VB were sequenced. Greater than 18-fold enrichment of P. falciparum DNA was achieved from DBS extracts. The parasitaemia threshold to achieve >5× coverage for 50% of the genome was 0.03% (40 parasites per 200 white blood cells). Over 99% SNP concordance between VB and DBS samples was achieved after excluding missing calls. CONCLUSION: The sWGA methods described here provide a reliable and scalable way of generating P. falciparum genome sequence data from DBS samples. The current data indicate that it will be possible to get good quality sequence on most if not all drug resistance loci from the majority of symptomatic malaria patients. This technique overcomes a major limiting factor in P. falciparum genome sequencing from field samples, and paves the way for large-scale epidemiological applications.


Assuntos
Sangue/parasitologia , Dessecação , Genoma de Protozoário , Técnicas de Amplificação de Ácido Nucleico/métodos , Plasmodium falciparum/genética , Análise de Sequência de DNA , Manejo de Espécimes/métodos , Primers do DNA/genética , DNA de Protozoário/química , DNA de Protozoário/genética , DNA de Protozoário/isolamento & purificação , Humanos , Plasmodium falciparum/isolamento & purificação
19.
Nat Genet ; 48(8): 959-964, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27348299

RESUMO

The widespread distribution and relapsing nature of Plasmodium vivax infection present major challenges for the elimination of malaria. To characterize the genetic diversity of this parasite in individual infections and across the population, we performed deep genome sequencing of >200 clinical samples collected across the Asia-Pacific region and analyzed data on >300,000 SNPs and nine regions of the genome with large copy number variations. Individual infections showed complex patterns of genetic structure, with variation not only in the number of dominant clones but also in their level of relatedness and inbreeding. At the population level, we observed strong signals of recent evolutionary selection both in known drug resistance genes and at new loci, and these varied markedly between geographical locations. These findings demonstrate a dynamic landscape of local evolutionary adaptation in the parasite population and provide a foundation for genomic surveillance to guide effective strategies for control and elimination of P. vivax.


Assuntos
Evolução Biológica , Marcadores Genéticos/genética , Variação Genética/genética , Genômica/métodos , Malária Vivax/genética , Plasmodium vivax/genética , Humanos , Malária Vivax/parasitologia , Malária Vivax/transmissão , Plasmodium vivax/patogenicidade
20.
J Infect Dis ; 211(8): 1352-5, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25367300

RESUMO

Mutations in the Plasmodium falciparum K13-propeller domain have recently been shown to be important determinants of artemisinin resistance in Southeast Asia. This study investigated the prevalence of K13-propeller polymorphisms across sub-Saharan Africa. A total of 1212 P. falciparum samples collected from 12 countries were sequenced. None of the K13-propeller mutations previously reported in Southeast Asia were found, but 22 unique mutations were detected, of which 7 were nonsynonymous. Allele frequencies ranged between 1% and 3%. Three mutations were observed in >1 country, and the A578S was present in parasites from 5 countries. This study provides the baseline prevalence of K13-propeller mutations in sub-Saharan Africa.


Assuntos
Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único/genética , Alelos , Antimaláricos/farmacologia , Artemisininas/farmacologia , Sudeste Asiático , Resistência a Medicamentos/genética , Frequência do Gene , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Mutação/genética , Plasmodium falciparum/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...