Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Br J Cancer ; 130(11): 1809-1818, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38532103

RESUMO

BACKGROUND: Existing colorectal cancer subtyping methods were generated without much consideration of potential differences in expression profiles between colon and rectal tissues. Moreover, locally advanced rectal cancers at resection often have received neoadjuvant chemoradiotherapy which likely has a significant impact on gene expression. METHODS: We collected mRNA expression profiles for rectal and colon cancer samples (n = 2121). We observed that (i) Consensus Molecular Subtyping (CMS) had a different prognosis in treatment-naïve rectal vs. colon cancers, and (ii) that neoadjuvant chemoradiotherapy exposure produced a strong shift in CMS subtypes in rectal cancers. We therefore clustered 182 untreated rectal cancers to find rectal cancer-specific subtypes (RSSs). RESULTS: We identified three robust subtypes. We observed that RSS1 had better, and RSS2 had worse disease-free survival. RSS1 showed high expression of MYC target genes and low activity of angiogenesis genes. RSS2 exhibited low regulatory T cell abundance, strong EMT and angiogenesis signalling, and high activation of TGF-ß, NF-κB, and TNF-α signalling. RSS3 was characterised by the deactivation of EGFR, MAPK and WNT pathways. CONCLUSIONS: We conclude that RSS subtyping allows for more accurate prognosis predictions in rectal cancers than CMS subtyping and provides new insight into targetable disease pathways within these subtypes.


Assuntos
Neoplasias Retais , Humanos , Neoplasias Retais/genética , Neoplasias Retais/patologia , Neoplasias Retais/terapia , Neoplasias Retais/classificação , Prognóstico , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Intervalo Livre de Doença , Regulação Neoplásica da Expressão Gênica , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Neoplasias do Colo/classificação , Perfilação da Expressão Gênica , Terapia Neoadjuvante
2.
Cell Oncol (Dordr) ; 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37934338

RESUMO

PURPOSE: The histone deacetylase inhibitor (HDACi), belinostat, has had limited therapeutic impact in solid tumors, such as colon cancer, due to its poor metabolic stability. Here we evaluated a novel belinostat prodrug, copper-bis-belinostat (Cubisbel), in vitro and ex vivo, designed to overcome the pharmacokinetic challenges of belinostat. METHODS: The in vitro metabolism of each HDACi was evaluated in human liver microsomes (HLMs) using mass spectrometry. Next, the effect of belinostat and Cubisbel on cell growth, HDAC activity, apoptosis and cell cycle was assessed in three colon cancer cell lines. Gene expression alterations induced by both HDACis were determined using RNA-Seq, followed by in silico analysis to identify master regulators (MRs) of differentially expressed genes (DEGs). The effect of both HDACis on the viability of colon cancer patient-derived tumor organoids (PDTOs) was also examined. RESULTS: Belinostat and Cubisbel significantly reduced colon cancer cell growth mediated through HDAC inhibition and apoptosis induction. Interestingly, the in vitro half-life of Cubisbel was significantly longer than belinostat. Belinostat and its Cu derivative commonly dysregulated numerous signalling and metabolic pathways while genes downregulated by Cubisbel were potentially controlled by VEGFA, ERBB2 and DUSP2 MRs. Treatment of colon cancer PDTOs with the HDACis resulted in a significant reduction in cell viability and downregulation of stem cell and proliferation markers. CONCLUSIONS: Complexation of belinostat to Cu(II) does not alter the HDAC activity of belinostat, but instead significantly enhances its metabolic stability in vitro and targets anti-cancer pathways by perturbing key MRs in colon cancer. Complexation of HDACis to a metal ion might improve the efficacy of clinically used HDACis in patients with colon cancer.

3.
J Neurooncol ; 163(2): 327-338, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37237151

RESUMO

BACKGROUND: Glioblastoma (GBM) is an aggressive brain cancer that typically results in death in the first 15 months after diagnosis. There have been limited advances in finding new treatments for GBM. In this study, we investigated molecular differences between patients with extremely short (≤ 9 months, Short term survivors, STS) and long survival (≥ 36 months, Long term survivors, LTS). METHODS: Patients were selected from an in-house cohort (GLIOTRAIN-cohort), using defined inclusion criteria (Karnofsky score > 70; age < 70 years old; Stupp protocol as first line treatment, IDH wild type), and a multi-omic analysis of LTS and STS GBM samples was performed. RESULTS: Transcriptomic analysis of tumour samples identified cilium gene signatures as enriched in LTS. Moreover, Immunohistochemical analysis confirmed the presence of cilia in the tumours of LTS. Notably, reverse phase protein array analysis (RPPA) demonstrated increased phosphorylated GAB1 (Y627), SRC (Y527), BCL2 (S70) and RAF (S338) protein expression in STS compared to LTS. Next, we identified 25 unique master regulators (MR) and 13 transcription factors (TFs) belonging to ontologies of integrin signalling and cell cycle to be upregulated in STS. CONCLUSION: Overall, comparison of STS and LTS GBM patients, identifies novel biomarkers and potential actionable therapeutic targets for the management of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Idoso , Glioblastoma/patologia , Prognóstico , Neoplasias Encefálicas/patologia , Encéfalo/patologia , Sobreviventes
4.
Epigenomes ; 7(1)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36975604

RESUMO

Epigenomic changes in the venous cells exerted by oscillatory shear stress towards the endothelium may result in consolidation of gene expression alterations upon vein wall remodeling during varicose transformation. We aimed to reveal such epigenome-wide methylation changes. Primary culture cells were obtained from non-varicose vein segments left after surgery of 3 patients by growing the cells in selective media after magnetic immunosorting. Endothelial cells were either exposed to oscillatory shear stress or left at the static condition. Then, other cell types were treated with preconditioned media from the adjacent layer's cells. DNA isolated from the harvested cells was subjected to epigenome-wide study using Illumina microarrays followed by data analysis with GenomeStudio (Illumina), Excel (Microsoft), and Genome Enhancer (geneXplain) software packages. Differential (hypo-/hyper-) methylation was revealed for each cell layer's DNA. The most targetable master regulators controlling the activity of certain transcription factors regulating the genes near the differentially methylated sites appeared to be the following: (1) HGS, PDGFB, and AR for endothelial cells; (2) HGS, CDH2, SPRY2, SMAD2, ZFYVE9, and P2RY1 for smooth muscle cells; and (3) WWOX, F8, IGF2R, NFKB1, RELA, SOCS1, and FXN for fibroblasts. Some of the identified master regulators may serve as promising druggable targets for treating varicose veins in the future.

5.
Gastro Hep Adv ; 1(3): 328-341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711675

RESUMO

Background and Aims: Individuals of African (AFR) ancestry have a higher incidence of colorectal cancer (CRC) than those of European (EUR) ancestry and exhibit significant health disparities. Previous studies have noted differences in the tumor microenvironment between AFR and EUR patients with CRC. However, the molecular regulatory processes that underpin these immune differences remain largely unknown. Methods: Multiomics analysis was carried out for 55 AFR and 456 EUR patients with microsatellite-stable CRC using The Cancer Genome Atlas. We evaluated the tumor microenvironment by using gene expression and methylation data, transcription factor, and master transcriptional regulator analysis to identify the cell signaling pathways mediating the observed phenotypic differences. Results: We demonstrate that downregulated genes in AFR patients with CRC showed enrichment for canonical pathways, including chemokine signaling. Moreover, evaluation of the tumor microenvironment showed that cytotoxic lymphocytes and neutrophil cell populations are significantly decreased in AFR compared with EUR patients, suggesting AFR patients have an attenuated immune response. We further demonstrate that molecules called "master transcriptional regulators" (MTRs) play a critical role in regulating the expression of genes impacting key immune processes through an intricate signal transduction network mediated by disease-associated transcription factors (TFs). Furthermore, a core set of these MTRs and TFs showed a positive correlation with levels of cytotoxic lymphocytes and neutrophils across both AFR and EUR patients with CRC, thus suggesting their role in driving the immune infiltrate differences between the two ancestral groups. Conclusion: Our study provides an insight into the intricate regulatory landscape of MTRs and TFs that orchestrate the differences in the tumor microenvironment between patients with CRC of AFR and EUR ancestry.

6.
Nucleic Acids Res ; 50(W1): W124-W131, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35536253

RESUMO

BioUML (https://www.biouml.org)-is a web-based integrated platform for systems biology and data analysis. It supports visual modelling and construction of hierarchical biological models that allow us to construct the most complex modular models of blood pressure regulation, skeletal muscle metabolism, COVID-19 epidemiology. BioUML has been integrated with git repositories where users can store their models and other data. We have also expanded the capabilities of BioUML for data analysis and visualization of biomedical data: (i) any programs and Jupyter kernels can be plugged into the BioUML platform using Docker technology; (ii) BioUML is integrated with the Galaxy and Galaxy Tool Shed; (iii) BioUML provides two-way integration with R and Python (Jupyter notebooks): scripts can be executed on the BioUML web pages, and BioUML functions can be called from scripts; (iv) using plug-in architecture, specialized viewers and editors can be added. For example, powerful genome browsers as well as viewers for molecular 3D structure are integrated in this way; (v) BioUML supports data analyses using workflows (own format, Galaxy, CWL, BPMN, nextFlow). Using these capabilities, we have initiated a new branch of the BioUML development-u-science-a universal scientific platform that can be configured for specific research requirements.


Assuntos
Modelos Biológicos , Software , Humanos , Biologia Computacional , COVID-19/epidemiologia , Biologia de Sistemas
7.
J Invest Dermatol ; 142(5): 1360-1371.e15, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34757068

RESUMO

Differences in the morphology and physiology of darkly pigmented skin compared with those of lightly pigmented skin are well-recognized. There are also disparities in the prevalence and clinical features for many inflammatory skin diseases, including atopic dermatitis and psoriasis; however, the underlying mechanisms are largely unknown. We compared the baseline gene expression in full-thickness skin biopsies from healthy individuals self-reporting as African American (AA) or as White non-Hispanic (WNH). Extensively validated RNA-sequencing analysis identified 570 differentially expressed genes in AA skin, including Igs and their receptors such as FCER1G; proinflammatory genes such as TNFα and IL32; and epidermal differentiation cluster and keratin genes. Differentially expressed genes were functionally enriched for inflammatory responses, keratinization, and cornified envelope formation. RNA-sequencing analysis of three-dimensional human skin equivalents made from AA and WNH primary keratinocytes revealed 360 differentially expressed genes (some shared with skin) that were enriched by similar functions. AA human skin equivalents appeared more responsive to TNF-α proinflammatory effects. Finally, AA-specific differentially expressed genes in the skin and human skin equivalents significantly overlapped with molecular signatures of skin in patients with atopic dermatitis and psoriasis. Overall, these findings suggest the existence of intrinsic proinflammatory circuits in AA keratinocytes/skin that may account for disease disparities and will help to build a foundation for the development of targeted skin disease prevention.


Assuntos
Dermatite Atópica , Psoríase , Negro ou Afro-Americano/genética , Dermatite Atópica/patologia , Perfilação da Expressão Gênica , Humanos , Queratinócitos/metabolismo , Psoríase/patologia , RNA/metabolismo , Pele/patologia , Transcriptoma , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
8.
Nat Commun ; 12(1): 6558, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772928

RESUMO

Detailed characterization of cell type transitions is essential for cell biology in general and particularly for the development of stem cell-based therapies in regenerative medicine. To systematically study such transitions, we introduce a method that simultaneously measures protein expression and thermal stability changes in cells and provide the web-based visualization tool ProteoTracker. We apply our method to study differences between human pluripotent stem cells and several cell types including their parental cell line and differentiated progeny. We detect alterations of protein properties in numerous cellular pathways and components including ribosome biogenesis and demonstrate that modulation of ribosome maturation through SBDS protein can be helpful for manipulating cell stemness in vitro. Using our integrative proteomics approach and the web-based tool, we uncover a molecular basis for the uncoupling of robust transcription from parsimonious translation in stem cells and propose a method for maintaining pluripotency in vitro.


Assuntos
Proteômica/métodos , Diferenciação Celular/fisiologia , Linhagem Celular , Humanos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo
9.
Front Genet ; 12: 670240, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211498

RESUMO

Only 2% of glioblastoma multiforme (GBM) patients respond to standard therapy and survive beyond 36 months (long-term survivors, LTS), while the majority survive less than 12 months (short-term survivors, STS). To understand the mechanism leading to poor survival, we analyzed publicly available datasets of 113 STS and 58 LTS. This analysis revealed 198 differentially expressed genes (DEGs) that characterize aggressive tumor growth and may be responsible for the poor prognosis. These genes belong largely to the Gene Ontology (GO) categories "epithelial-to-mesenchymal transition" and "response to hypoxia." In this article, we applied an upstream analysis approach that involves state-of-the-art promoter analysis and network analysis of the dysregulated genes potentially responsible for short survival in GBM. Binding sites for transcription factors (TFs) associated with GBM pathology like NANOG, NF-κB, REST, FRA-1, PPARG, and seven others were found enriched in the promoters of the dysregulated genes. We reconstructed the gene regulatory network with several positive feedback loops controlled by five master regulators [insulin-like growth factor binding protein 2 (IGFBP2), vascular endothelial growth factor A (VEGFA), VEGF165, platelet-derived growth factor A (PDGFA), adipocyte enhancer-binding protein (AEBP1), and oncostatin M (OSMR)], which can be proposed as biomarkers and as therapeutic targets for enhancing GBM prognosis. A critical analysis of this gene regulatory network gives insights into the mechanism of gene regulation by IGFBP2 via several TFs including the key molecule of GBM tumor invasiveness and progression, FRA-1. All the observations were validated in independent cohorts, and their impact on overall survival has been investigated.

10.
Nucleic Acids Res ; 49(D1): D104-D111, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33231677

RESUMO

The Gene Transcription Regulation Database (GTRD; http://gtrd.biouml.org/) contains uniformly annotated and processed NGS data related to gene transcription regulation: ChIP-seq, ChIP-exo, DNase-seq, MNase-seq, ATAC-seq and RNA-seq. With the latest release, the database has reached a new level of data integration. All cell types (cell lines and tissues) presented in the GTRD were arranged into a dictionary and linked with different ontologies (BRENDA, Cell Ontology, Uberon, Cellosaurus and Experimental Factor Ontology) and with related experiments in specialized databases on transcription regulation (FANTOM5, ENCODE and GTEx). The updated version of the GTRD provides an integrated view of transcription regulation through a dedicated web interface with advanced browsing and search capabilities, an integrated genome browser, and table reports by cell types, transcription factors, and genes of interest.


Assuntos
Bases de Dados Genéticas , Regulação da Expressão Gênica , Genoma , Fatores de Transcrição/genética , Transcrição Gênica , Animais , Linhagem Celular , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ontologia Genética , Humanos , Internet , Camundongos , Anotação de Sequência Molecular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Software , Fatores de Transcrição/classificação , Fatores de Transcrição/metabolismo
11.
R Soc Open Sci ; 7(7): 191243, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32874597

RESUMO

Glioblastoma (GBM) is the most aggressive malignant primary brain tumour with a median overall survival of 15 months. To treat GBM, patients currently undergo a surgical resection followed by exposure to radiotherapy and concurrent and adjuvant temozolomide (TMZ) chemotherapy. However, this protocol often leads to treatment failure, with drug resistance being the main reason behind this. To date, many studies highlight the role of O-6-methylguanine-DNA methyltransferase (MGMT) in conferring drug resistance. The mechanism through which MGMT confers resistance is not well studied-particularly in terms of computational models. With only a few reasonable biological assumptions, we were able to show that even a minimal model of MGMT expression could robustly explain TMZ-mediated drug resistance. In particular, we showed that for a wide range of parameter values constrained by novel cell growth and viability assays, a model accounting for only stochastic gene expression of MGMT coupled with cell growth, division, partitioning and death was able to exhibit phenotypic selection of GBM cells expressing MGMT in response to TMZ. Furthermore, we found this selection allowed the cells to pass their acquired phenotypic resistance onto daughter cells in a stable manner (as long as TMZ is provided). This suggests that stochastic gene expression alone is enough to explain the development of chemotherapeutic resistance.

12.
Dis Model Mech ; 13(11)2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-32958515

RESUMO

Inflammatory bowel diseases (IBDs) cause significant morbidity and mortality. Aberrant NF-κB signalling is strongly associated with these conditions, and several established drugs influence the NF-κB signalling network to exert their effect. This study aimed to identify drugs that alter NF-κB signalling and could be repositioned for use in IBD. The SysmedIBD Consortium established a novel drug-repurposing pipeline based on a combination of in silico drug discovery and biological assays targeted at demonstrating an impact on NF-κB signalling, and a murine model of IBD. The drug discovery algorithm identified several drugs already established in IBD, including corticosteroids. The highest-ranked drug was the macrolide antibiotic clarithromycin, which has previously been reported to have anti-inflammatory effects in aseptic conditions. The effects of clarithromycin effects were validated in several experiments: it influenced NF-κB-mediated transcription in murine peritoneal macrophages and intestinal enteroids; it suppressed NF-κB protein shuttling in murine reporter enteroids; it suppressed NF-κB (p65) DNA binding in the small intestine of mice exposed to lipopolysaccharide; and it reduced the severity of dextran sulphate sodium-induced colitis in C57BL/6 mice. Clarithromycin also suppressed NF-κB (p65) nuclear translocation in human intestinal enteroids. These findings demonstrate that in silico drug repositioning algorithms can viably be allied to laboratory validation assays in the context of IBD, and that further clinical assessment of clarithromycin in the management of IBD is required.This article has an associated First Person interview with the joint first authors of the paper.


Assuntos
Reposicionamento de Medicamentos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/patologia , Análise de Sistemas , Animais , Células Cultivadas , Claritromicina/farmacologia , Claritromicina/uso terapêutico , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , DNA/metabolismo , Sulfato de Dextrana , Redes Reguladoras de Genes , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Lipopolissacarídeos , Luciferases/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Organoides/efeitos dos fármacos , Organoides/metabolismo , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
13.
Int J Mol Sci ; 21(8)2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295185

RESUMO

Accumulation of lipid-laden (foam) cells in the arterial wall is known to be the earliest step in the pathogenesis of atherosclerosis. There is almost no doubt that atherogenic modified low-density lipoproteins (LDL) are the main sources of accumulating lipids in foam cells. Atherogenic modified LDL are taken up by arterial cells, such as macrophages, pericytes, and smooth muscle cells in an unregulated manner bypassing the LDL receptor. The present study was conducted to reveal possible common mechanisms in the interaction of macrophages with associates of modified LDL and non-lipid latex particles of a similar size. To determine regulatory pathways that are potentially responsible for cholesterol accumulation in human macrophages after the exposure to naturally occurring atherogenic or artificially modified LDL, we used transcriptome analysis. Previous studies of our group demonstrated that any type of LDL modification facilitates the self-association of lipoprotein particles. The size of such self-associates hinders their interaction with a specific LDL receptor. As a result, self-associates are taken up by nonspecific phagocytosis bypassing the LDL receptor. That is why we used latex beads as a stimulator of macrophage phagocytotic activity. We revealed at least 12 signaling pathways that were regulated by the interaction of macrophages with the multiple-modified atherogenic naturally occurring LDL and with latex beads in a similar manner. Therefore, modified LDL was shown to stimulate phagocytosis through the upregulation of certain genes. We have identified at least three genes (F2RL1, EIF2AK3, and IL15) encoding inflammatory molecules and associated with signaling pathways that were upregulated in response to the interaction of modified LDL with macrophages. Knockdown of two of these genes, EIF2AK3 and IL15, completely suppressed cholesterol accumulation in macrophages. Correspondingly, the upregulation of EIF2AK3 and IL15 promoted cholesterol accumulation. These data confirmed our hypothesis of the following chain of events in atherosclerosis: LDL particles undergo atherogenic modification; this is accompanied by the formation of self-associates; large LDL associates stimulate phagocytosis; as a result of phagocytosis stimulation, pro-inflammatory molecules are secreted; these molecules cause or at least contribute to the accumulation of intracellular cholesterol. This chain of events may explain the relationship between cholesterol accumulation and inflammation. The primary sequence of events in this chain is related to inflammatory response rather than cholesterol accumulation.


Assuntos
Colesterol/metabolismo , Células Espumosas/metabolismo , Metabolismo dos Lipídeos , Transdução de Sinais , Biomarcadores , Suscetibilidade a Doenças , Células Espumosas/patologia , Perfilação da Expressão Gênica , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Modelos Biológicos
14.
Int J Mol Sci ; 21(3)2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-32012706

RESUMO

Excessive accumulation of lipid inclusions in the arterial wall cells (foam cell formation) caused by modified low-density lipoprotein (LDL) is the earliest and most noticeable manifestation of atherosclerosis. The mechanisms of foam cell formation are not fully understood and can involve altered lipid uptake, impaired lipid metabolism, or both. Recently, we have identified the top 10 master regulators that were involved in the accumulation of cholesterol in cultured macrophages induced by the incubation with modified LDL. It was found that most of the identified master regulators were related to the regulation of the inflammatory immune response, but not to lipid metabolism. A possible explanation for this unexpected result is a stimulation of the phagocytic activity of macrophages by modified LDL particle associates that have a relatively large size. In the current study, we investigated gene regulation in macrophages using transcriptome analysis to test the hypothesis that the primary event occurring upon the interaction of modified LDL and macrophages is the stimulation of phagocytosis, which subsequently triggers the pro-inflammatory immune response. We identified genes that were up- or downregulated following the exposure of cultured cells to modified LDL or latex beads (inert phagocytosis stimulators). Most of the identified master regulators were involved in the innate immune response, and some of them were encoding major pro-inflammatory proteins. The obtained results indicated that pro-inflammatory response to phagocytosis stimulation precedes the accumulation of intracellular lipids and possibly contributes to the formation of foam cells. In this way, the currently recognized hypothesis that the accumulation of lipids triggers the pro-inflammatory response was not confirmed. Comparative analysis of master regulators revealed similarities in the genetic regulation of the interaction of macrophages with naturally occurring LDL and desialylated LDL. Oxidized and desialylated LDL affected a different spectrum of genes than naturally occurring LDL. These observations suggest that desialylation is the most important modification of LDL occurring in vivo. Thus, modified LDL caused the gene regulation characteristic of the stimulation of phagocytosis. Additionally, the knock-down effect of five master regulators, such as IL15, EIF2AK3, F2RL1, TSPYL2, and ANXA1, on intracellular lipid accumulation was tested. We knocked down these genes in primary macrophages derived from human monocytes. The addition of atherogenic naturally occurring LDL caused a significant accumulation of cholesterol in the control cells. The knock-down of the EIF2AK3 and IL15 genes completely prevented cholesterol accumulation in cultured macrophages. The knock-down of the ANXA1 gene caused a further decrease in cholesterol content in cultured macrophages. At the same time, knock-down of F2RL1 and TSPYL2 did not cause an effect. The results obtained allowed us to explain in which way the inflammatory response and the accumulation of cholesterol are related confirming our hypothesis of atherogenesis development based on the following viewpoints: LDL particles undergo atherogenic modifications that, in turn, accompanied by the formation of self-associates; large LDL associates stimulate phagocytosis; as a result of phagocytosis stimulation, pro-inflammatory molecules are secreted; these molecules cause or at least contribute to the accumulation of intracellular cholesterol. Therefore, it became obvious that the primary event in this sequence is not the accumulation of cholesterol but an inflammatory response.


Assuntos
Células Espumosas/metabolismo , Células Espumosas/patologia , Lipoproteínas LDL/metabolismo , Fagocitose , Biomarcadores , Células Espumosas/imunologia , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Imunidade Inata , Metabolismo dos Lipídeos , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Oxirredução , Fagocitose/genética , Fagocitose/imunologia , Transdução de Sinais , Transcriptoma
15.
Oncotarget ; 10(51): 5267-5297, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31523389

RESUMO

Semisynthetic triterpenoids, bearing cyano enone functionality in ring A, are considered now as novel promising anti-tumor agents. However, despite the large-scale studies, their effects on cervical carcinoma cells and, moreover, mechanisms underlying cell death activation by such compounds in this cell type have not been fully elucidated. In this work, we attempted to reconstitute the key pathways and master regulators involved in the response of human cervical carcinoma KB-3-1 cells to the novel glycyrrhetinic acid derivative soloxolone methyl (SM) by a transcriptomic approach. Functional annotation of differentially expressed genes, analysis of their cis- regulatory sequences and protein-protein interaction network clearly indicated that stress of endoplasmic reticulum (ER) is the central event triggered by SM in the cells. A range of key ER stress sensors and transcription factor AP-1 were identified as upstream transcriptional regulators, controlling the response of the cells to SM. Additionally, by using Gene Expression Omnibus data, we showed the ability of SM to modulate the expression of key genes involved in regulation of the high proliferative rate of cervical carcinoma cells. Further Connectivity Map analysis revealed similarity of SM's effects with known ER stress inducers thapsigargin and geldanamycin, targeting SERCA and Grp94, respectively. According to the molecular docking study, SM could snugly fit into the active sites of these proteins in the positions very close to that of both inhibitors. Taken together, our findings provide a basis for the better understanding of the intracellular processes in tumor cells switched on in response to cyano enone-bearing triterpenoids.

16.
Nucleic Acids Res ; 47(W1): W225-W233, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31131402

RESUMO

BioUML (homepage: http://www.biouml.org, main public server: https://ict.biouml.org) is a web-based integrated environment (platform) for systems biology and the analysis of biomedical data generated by omics technologies. The BioUML vision is to provide a computational platform to build virtual cell, virtual physiological human and virtual patient. BioUML spans a comprehensive range of capabilities, including access to biological databases, powerful tools for systems biology (visual modelling, simulation, parameters fitting and analyses), a genome browser, scripting (R, JavaScript) and a workflow engine. Due to integration with the Galaxy platform and R/Bioconductor, BioUML provides powerful possibilities for the analyses of omics data. The plug-in-based architecture allows the user to add new functionalities using plug-ins. To facilitate a user focus on a particular task or database, we have developed several predefined perspectives that display only those web interface elements that are needed for a specific task. To support collaborative work on scientific projects, there is a central authentication and authorization system (https://bio-store.org). The diagram editor enables several remote users to simultaneously edit diagrams.


Assuntos
Bases de Dados Factuais , Internet , Modelos Biológicos , Software , Biologia de Sistemas , Animais , Humanos
17.
BMC Bioinformatics ; 20(Suppl 4): 119, 2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-30999858

RESUMO

BACKGROUND: The search for molecular biomarkers of early-onset colorectal cancer (CRC) is an important but still quite challenging and unsolved task. Detection of CpG methylation in human DNA obtained from blood or stool has been proposed as a promising approach to a noninvasive early diagnosis of CRC. Thousands of abnormally methylated CpG positions in CRC genomes are often located in non-coding parts of genes. Novel bioinformatic methods are thus urgently needed for multi-omics data analysis to reveal causative biomarkers with a potential driver role in early stages of cancer. METHODS: We have developed a method for finding potential causal relationships between epigenetic changes (DNA methylations) in gene regulatory regions that affect transcription factor binding sites (TFBS) and gene expression changes. This method also considers the topology of the involved signal transduction pathways and searches for positive feedback loops that may cause the carcinogenic aberrations in gene expression. We call this method "Walking pathways", since it searches for potential rewiring mechanisms in cancer pathways due to dynamic changes in the DNA methylation status of important gene regulatory regions ("epigenomic walking"). RESULTS: In this paper, we analysed an extensive collection of full genome gene-expression data (RNA-seq) and DNA methylation data of genomic CpG islands (using Illumina methylation arrays) generated from a sample of tumor and normal gut epithelial tissues of 300 patients with colorectal cancer (at different stages of the disease) (data generated in the EU-supported SysCol project). Identification of potential epigenetic biomarkers of DNA methylation was performed using the fully automatic multi-omics analysis web service "My Genome Enhancer" (MGE) (my-genome-enhancer.com). MGE uses the database on gene regulation TRANSFAC®, the signal transduction pathways database TRANSPATH®, and software that employs AI (artificial intelligence) methods for the analysis of cancer-specific enhancers. CONCLUSIONS: The identified biomarkers underwent experimental testing on an independent set of blood samples from patients with colorectal cancer. As a result, using advanced methods of statistics and machine learning, a minimum set of 6 biomarkers was selected, which together achieve the best cancer detection potential. The markers include hypermethylated positions in regulatory regions of the following genes: CALCA, ENO1, MYC, PDX1, TCF7, ZNF43.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Metilação de DNA/genética , Retroalimentação Fisiológica , Transdução de Sinais/genética , Sítios de Ligação/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/patologia , Ilhas de CpG/genética , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Fatores de Transcrição/metabolismo
18.
Comput Biol Chem ; 77: 297-306, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30408727

RESUMO

The use of targeted next-generation sequencing (NGS) provides great new opportunities for molecular and medical genetics. However, in order to take advantage of these opportunities, we need to have reliable tools for extracting the necessary information from the huge amount of data generated by NGS. Here we present our automatic multithreaded workflow for processing NGS data of BRCA1 and BRCA2 genes obtained with NGS technology named BRCA-analyzer. Optimizing it on the sequencing data of 899 samples from 693 patients, we were able to find the most reliable tools and adjust their parameters in such a way that all pathogenic variants found were confirmed by Sanger's sequencing. For 82 and 24 DNA samples from blood and formalin-fixed paraffin-embedded blocks, NGS libraries were prepared with GeneRead BRCA panel v2 (Qiagen). The reads obtained were processed with BRCA-analyzer and Qiagen GeneRead Data analysis workflow. In total 27 pathogenic variants were found and confirmed by Sanger's sequencing, with all of them determined with BRCA-analyzer. Qiagen GeneRead Data analysis discarded 5 true pathogenic variants due to their location in homopolymeric sequence stretches. For other 793 samples, libraries were prepared by the in-house method, and NGS data were analyzed by BRCA-analyzer in comparison to another free automatic amplicon NGS workflow Canary. From total 137 pathogenic variations, BRCA-analyzer found 135 and Canary 123. Mutations were missed by BRCA-analyzer due to the trimming primer sequences from reads before mapping to be fixed in the next version. On the freely available NGS data, we showed that BRCA-analyzer could also be used for hybrid capture gene panels, although it needs more extensive testing on such library preparation methods. Thus, BRCA-analyzer is an automatic workflow for processing NGS data of BRCA1/2 genes with variant filters adapted to amplicon-based targeted NGS data. BRCA-analyzer can be used to identify germline as well as somatic mutations. BRCA-analyzer is freely available at https://github.com/aakechin/BRCA-analyzer.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequência de Bases , Feminino , Frequência do Gene , Genes BRCA1 , Genes BRCA2 , Variação Genética , Humanos , Masculino , Mutação , Fluxo de Trabalho
19.
Curr Pharm Des ; 24(26): 3143-3151, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30205792

RESUMO

BACKGROUND: A hallmark of atherosclerosis is its complex pathogenesis, which is dependent on altered cholesterol metabolism and inflammation. Both arms of pathogenesis involve myeloid cells. Monocytes migrating into the arterial walls interact with modified low-density lipoprotein (LDL) particles, accumulate cholesterol and convert into foam cells, which promote plaque formation and also contribute to inflammation by producing proinflammatory cytokines. A number of studies characterized transcriptomics of macrophages following interaction with modified LDL, and revealed alteration of the expression of genes responsible for inflammatory response and cholesterol metabolism. However, it is still unclear how these two processes are related to each other to contribute to atherosclerotic lesion formation. METHODS: We attempted to identify the main mater regulator genes in macrophages treated with atherogenic modified LDL using a bioinformatics approach. RESULTS: We found that most of the identified genes were involved in inflammation, and none of them was implicated in cholesterol metabolism. Among the key identified genes were interleukin (IL)-7, IL-7 receptor, IL- 15 and CXCL8. CONCLUSION: Our results indicate that activation of the inflammatory pathway is the primary response of the immune cells to modified LDL, while the lipid metabolism genes may be a secondary response triggered by inflammatory signalling.


Assuntos
Perfilação da Expressão Gênica , Inflamação/genética , Inflamação/metabolismo , Lipoproteínas LDL/genética , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Voluntários Saudáveis , Humanos , Lipoproteínas LDL/química
20.
Epigenomics ; 10(8): 1103-1119, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30070582

RESUMO

AIM: To integrate transcriptomic and DNA-methylomic measurements on varicose versus normal veins using a systems biological analysis to shed light on the interplay between genetic and epigenetic factors. MATERIALS & METHODS: Differential expression and methylation were measured using microarrays, supported by real-time quantitative PCR and immunohistochemistry confirmation for relevant gene products. A systems biological 'upstream analysis' was further applied. RESULTS: We identified several potential key players contributing to extracellular matrix remodeling in varicose veins. Specifically, our analysis suggests MFAP5 acting as a master regulator, upstream of integrins, of the cellular network affecting the varicose vein condition. Possible mechanism and pathogenic model were outlined. CONCLUSION: A coherent model proposed incorporates the relevant signaling networks and will hopefully aid further studies on varicose vein pathogenesis.


Assuntos
Proteínas Contráteis/genética , Matriz Extracelular , Glicoproteínas/genética , Varizes/genética , Adulto , Metilação de DNA , Feminino , Perfilação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Pessoa de Meia-Idade , Veia Safena
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA