Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Leukemia ; 38(3): 630-639, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272991

RESUMO

Measurable residual disease (MRD) measured in the bone marrow (BM) of acute myeloid leukemia (AML) patients after induction chemotherapy is an established prognostic factor. Hemodilution, stemming from peripheral blood (PB) mixing within BM during aspiration, can yield false-negative MRD results. We prospectively examined hemodilution by measuring MRD in BM aspirates obtained from three consecutive 2 mL pulls, along with PB samples. Our results demonstrated a significant decrease in MRD percentages between the first and second pulls (P = 0.025) and between the second and third pulls (P = 0.025), highlighting the impact of hemodilution. Initially, 39% of MRD levels (18/46 leukemia-associated immunophenotypes) exceeded the 0.1% cut-off, decreasing to 30% (14/46) in the third pull. Additionally, we assessed the performance of six published methods and parameters for distinguishing BM from PB samples, addressing or compensating for hemodilution. The most promising results relied on the percentages of CD16dim granulocytic population (scarce in BM) and CD117high mast cells (exclusive to BM). Our findings highlight the importance of estimating hemodilution in MRD assessment to qualify MRD results, particularly near the common 0.1% cut-off. To avoid false-negative results by hemodilution, it is essential to collect high-quality BM aspirations and preferably utilizing the initial pull for MRD testing.


Assuntos
Hemodiluição , Leucemia Mieloide Aguda , Humanos , Citometria de Fluxo/métodos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/genética , Medula Óssea , Neoplasia Residual/diagnóstico , Prognóstico
3.
Cytometry B Clin Cytom ; 104(6): 426-439, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37766649

RESUMO

BACKGROUND: Measurable residual disease (MRD) assessed by multiparametric flow cytometry (MFC) has gained importance in clinical decision-making for acute myeloid leukemia (AML) patients. However, complying with the recent In Vitro Diagnostic Regulations (IVDR) in Europe and Food and Drug Administration (FDA) guidance in the United States requires rigorous validation prior to their use in investigational clinical trials and diagnostics. Validating AML MRD-MFC assays poses challenges due to the unique underlying disease biology and paucity of patient specimens. In this study, we describe an experimental framework for validation that meets regulatory expectations. METHODS: Our validation efforts focused on evaluating assay accuracy, analytical specificity, analytical and functional sensitivity (limit of blank (LoB), detection (LLoD) and quantitation (LLoQ)), precision, linearity, sample/reagent stability and establishing the assay background frequencies. RESULTS: Correlation between different MFC methods was highly significant (r = 0.99 for %blasts and r = 0.93 for %LAIPs). The analysis of LAIP specificity accurately discriminated from negative control cells. The assay demonstrated a LoB of 0.03, LLoD of 0.04, and LLoQ of 0.1%. Precision experiments yielded highly reproducible results (Coefficient of Variation <20%). Stability experiments demonstrated reliable measurement of samples up to 96 h from collection. Furthermore, the reference range of LAIP frequencies in non-AML patients was below 0.1%, ranging from 0.0% to 0.04%. CONCLUSION: In this manuscript, we present the validation of an AML MFC-MRD assay using BM/PB patient specimens, adhering to best practices. Our approach is expected to assist other laboratories in expediting their validation activities to fulfill recent health authority guidelines.


Assuntos
Leucemia Mieloide Aguda , Humanos , Citometria de Fluxo/métodos , Leucemia Mieloide Aguda/diagnóstico , Neoplasia Residual/diagnóstico , Imunofenotipagem
5.
Cancers (Basel) ; 13(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073205

RESUMO

Measurable residual disease (MRD) in AML, assessed by multicolor flow cytometry, is an important prognostic factor. Progenitors are key populations in defining MRD, and cases of MRD involving these progenitors are calculated as percentage of WBC and referred to as white blood cell MRD (WBC-MRD). Two main compartments of WBC-MRD can be defined: (1) the AML part of the total primitive/progenitor (CD34+, CD117+, CD133+) compartment (referred to as primitive marker MRD; PM-MRD) and (2) the total progenitor compartment (% of WBC, referred to as PM%), which is the main quantitative determinant of WBC-MRD. Both are related as follows: WBC-MRD = PM-MRD × PM%. We explored the relative contribution of each parameter to the prognostic impact. In the HOVON/SAKK study H102 (300 patients), based on two objectively assessed cut-off points (2.34% and 10%), PM-MRD was found to offer an independent prognostic parameter that was able to identify three patient groups with different prognoses with larger discriminative power than WBC-MRD. In line with this, the PM% parameter itself showed no prognostic impact, implying that the prognostic impact of WBC-MRD results from the PM-MRD parameter it contains. Moreover, the presence of the PM% parameter in WBC-MRD may cause WBC-MRD false positivity and WBC-MRD false negativity. For the latter, at present, it is clinically relevant that PM-MRD ≥ 10% identifies a patient sub-group with a poor prognosis that is currently classified as good prognosis MRDnegative using the European LeukemiaNet 0.1% consensus MRD cut-off value. These observations suggest that residual disease analysis using PM-MRD should be conducted.

6.
Artigo em Inglês | MEDLINE | ID: mdl-32760351

RESUMO

Fibrodysplasia Ossificans Progressiva (FOP) is a rare genetic disease characterized by heterotopic ossification (HO) that occurs in muscle tissue, tendons, and ligaments. The disease is caused by mutations in the Activin receptor type I (ACVR1) gene resulting in enhanced responsiveness to Activin-A. Binding of this molecule to the mutated receptor induces HO. Bone metabolism normally requires the coupled action of osteoblasts and osteoclasts, which seems to be disturbed during HO. We hypothesize that Activin-A may also counteract the formation of osteoclasts in FOP patients. In this study we investigated the effect of Activin-A on osteoclast differentiation of CD14+ monocytes from FOP patients and healthy controls. The lymphocytic and monocytic cell populations were determined by FACS analysis. Expression of the mutated R206H receptor was assessed and confirmed by allele specific PCR. The effect of Activin-A on osteoclastogenesis was assessed by counting the number and size of multinucleated cells. Osteoclast activity was determined by culturing the cells on Osteo Assay plates. The influence of Activin-A on expression of various osteoclast related genes was studied with QPCR. Blood from FOP patients contained similar percentages of classical, intermediate, or non-classical monocytes as healthy controls. Addition of Activin-A to the osteoclastogenesis cultures resulted in fewer osteoclasts in both control and FOP cultures. The osteoclasts formed in the presence of Activin-A were, however, much larger and more active compared to the cultures without Activin-A. This effect was tempered when the Activin-A inhibitor follistatin was added to the Activin-A containing cultures. Expression of osteoclast specific genes Cathepsin K and TRAcP was upregulated, gene expression of osteoclastogenesis related genes M-CSF and DC-STAMP was downregulated by Activin-A. Since Activin-A is a promising target for inhibiting the formation of HO in FOP, it is important to know its effects on both osteoblasts and osteoclasts. Our study shows that Activin-A induces fewer, but larger and more active osteoclasts independent of the presence of the mutated ACVR1 receptor. When considering FOP as an Activin-A driven disease that acts locally, our findings suggest that Activin-A could cause a more pronounced local resorption by larger osteoclasts. Thus, when targeting Activin-A in patients with neutralizing antibodies, HO formation could potentially be inhibited, and osteoclastic activity could be slightly reduced, but then performed dispersedly by more and smaller osteoclasts.


Assuntos
Ativinas/metabolismo , Reabsorção Óssea/patologia , Monócitos/citologia , Miosite Ossificante/patologia , Osteoclastos/citologia , Osteogênese , Adulto , Idoso , Reabsorção Óssea/metabolismo , Estudos de Casos e Controles , Diferenciação Celular , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Miosite Ossificante/metabolismo , Osteoclastos/metabolismo , Transdução de Sinais , Adulto Jovem
7.
Br J Haematol ; 190(6): 891-900, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32239670

RESUMO

Leukaemic stem cells (LSC) have been experimentally defined as the leukaemia-propagating population and are thought to be the cellular reservoir of relapse in acute myeloid leukaemia (AML). Therefore, LSC measurements are warranted to facilitate accurate risk stratification. Previously, we published the composition of a one-tube flow cytometric assay, characterised by the presence of 13 important membrane markers for LSC detection. Here we present the validation experiments of the assay in several large AML research centres, both in Europe and the United States. Variability within instruments and sample processing showed high correlations between different instruments (Rpearson  > 0·91, P < 0·001). Multi-centre testing introduced variation in reported LSC percentages but was found to be below the clinical relevant threshold. Clear gating protocols resulted in all laboratories being able to perform LSC assessment of the validation set. Participating centres were nearly unanimously able to distinguish LSChigh (>0·03% LSC) from LSClow (<0·03% LSC) despite inter-laboratory variation in reported LSC percentages. This study proves that the LSC assay is highly reproducible. These results together with the high prognostic impact of LSC load at diagnosis in AML patients render the one-tube LSC assessment a good marker for future risk classification.


Assuntos
Citometria de Fluxo , Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , Adulto , Feminino , Humanos , Leucemia Mieloide Aguda/sangue , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/patologia , Masculino , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia
8.
Front Oncol ; 10: 603636, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33575214

RESUMO

Acute myeloid leukemia (AML) is a heterogeneous clonal disease associated with a dismal survival, partly due to the frequent occurrence of relapse. Many patient- and leukemia-specific characteristics, such as age, cytogenetics, mutations, and measurable residual disease (MRD) after intensive chemotherapy, have shown to be valuable prognostic factors. MRD has become a rich field of research where many advances have been made regarding technical, biological, and clinical aspects, which will be the topic of this review. Since many laboratories involved in AML diagnostics have experience in immunophenotyping, multiparameter flow cytometry (MFC) based MRD is currently the most commonly used method. Although molecular, quantitative PCR based techniques may be more sensitive, their disadvantage is that they can only be applied in a subset of patients harboring the genetic aberration. Next-generation sequencing can assess and quantify mutations in many genes but currently does not offer highly sensitive MRD measurements on a routine basis. In order to provide reliable MRD results, MRD assay optimization and standardization is essential. Different techniques for MRD assessment are being evaluated, and combinations of the methods have shown promising results for improving its prognostic value. In this regard, the load of leukemic stem cells (LSC) has also been shown to add to the prognostic value of MFC-MRD. At this moment, MRD after intensive chemotherapy is most often used as a prognostic factor to help stratify patients, but also to select the most appropriate consolidation therapy. For example, to guide post-remission treatment for intermediate-risk patients where MRD positive patients receive allogeneic stem cell transplantation and MRD negative receive autologous stem cell transplantation. Other upcoming uses of MRD that are being investigated include: selecting the type of allogeneic stem cell transplantation therapy (donor, conditioning), monitoring after stem cell transplantation (to allow intervention), and determining drug efficacy for the use of a surrogate endpoint in clinical trials.

9.
Curr Protoc Cytom ; 91(1): e66, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31763792

RESUMO

Half of the patients with acute myeloid leukemia (AML), who achieve complete remission after chemotherapy treatment, will ultimately experience a relapse. Measurable residual disease (MRD) is an important post-treatment risk factor in AML, because it gives additional information about the depth of the remission. Within MRD, the small population of leukemic stem cells (LSCs) is thought to be at the base of the actual relapse. In this protocol, the flow cytometric detection of MRD and LSCs herein is outlined. We give a detailed overview of the sampling procedures for optimal multiparameter flow cytometry assessment of both MRD and LSC, using leukemia associated immunophenotypes (LAIPs) and LSC markers. Moreover, an overview of the gating strategies to detect LAIPs and LSC markers is provided. This protocol serves as guidance for flow cytometric detection of measurable residual (stem cell) disease necessary for proper therapeutic decision making in AML patients. © 2019 The Authors. Basic Protocol 1: Immunophenotypic LAIP detection for measurable residual disease monitoring Basic Protocol 2: Immunophenotypic detection of CD34+CD38- leukemic stem cells.


Assuntos
Citometria de Fluxo/métodos , Imunofenotipagem/métodos , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/patologia , ADP-Ribosil Ciclase 1/metabolismo , Antígenos CD34/metabolismo , Biomarcadores Tumorais/análise , Células da Medula Óssea/patologia , Contagem de Células , Células Cultivadas , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/metabolismo , Monitorização Fisiológica/métodos , Neoplasia Residual , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Recidiva
10.
Leuk Res ; 81: 27-34, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31002948

RESUMO

Leukemic stem cells (LSCs), defined by CD34/CD38 expression, are believed to be essential for leukemia initiation and therapy resistance in acute myeloid leukemia. In addition, the side population (SP), characterized by high Hoechst 33342 efflux, reflecting therapy resistance, has leukemia initiating ability. The purpose of this study is, in both CD34-positive and CD34-negative AML, to integrate both types of LSC compartment into a new more restricted definition. Different CD34/CD38/SP defined putative LSC and normal hematopoietic compartments, with neoplastic or normal nature, respectively, were thus identified after cell sorting, and confirmed by FISH/PCR. Stem cell activity was assessed in the long-term liquid culture stem cell assay. SP fractions harbored the strongest functional stem cell activity in both normal and neoplastic cells in both CD34-positive and CD34-negative AML. Overall, inclusion of SP fraction decreased the size of the putative CD34/CD38 defined LSC compartment by a factor >500. For example, for the important CD34+CD38- LSC compartment, the median SP/CD34+CD38- frequency was 5.1 per million WBC (CD34-positive AML), and median SP/CD34-CD38+ frequency (CD34-negative AML) was 1796 per million WBC. Improved detection of LSC may enable identification of therapy resistant clones, and thereby identification of novel LSC specific, HSC sparing, therapies.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Antígenos CD34/metabolismo , Células-Tronco Hematopoéticas/patologia , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/patologia , Células da Side Population/patologia , Células Cultivadas , Células-Tronco Hematopoéticas/metabolismo , Humanos , Imunofenotipagem , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células da Side Population/metabolismo
12.
Leukemia ; 33(5): 1102-1112, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30542144

RESUMO

Current risk algorithms are primarily based on pre-treatment factors and imperfectly predict outcome in acute myeloid leukemia (AML). We introduce and validate a post-treatment approach of leukemic stem cell (LSC) assessment for prediction of outcome. LSC containing CD34+CD38- fractions were measured using flow cytometry in an add-on study of the HOVON102/SAKK trial. Predefined cut-off levels were prospectively evaluated to assess CD34+CD38-LSC levels at diagnosis (n = 594), and, to identify LSClow/LSChigh (n = 302) and MRDlow/MRDhigh patients (n = 305) in bone marrow in morphological complete remission (CR). In 242 CR patients combined MRD and LSC results were available. At diagnosis the CD34+CD38- LSC frequency independently predicts overall survival (OS). After achieving CR, combining LSC and MRD showed reduced survival in MRDhigh/LSChigh patients (hazard ratio [HR] 3.62 for OS and 5.89 for cumulative incidence of relapse [CIR]) compared to MRDlow/LSChigh, MRDhigh/LSClow, and especially MRDlow/LSClow patients. Moreover, in the NPM1mutant positive sub-group, prognostic value of golden standard NPM1-MRD by qPCR can be improved by addition of flow cytometric approaches. This is the first prospective study demonstrating that LSC strongly improves prognostic impact of MRD detection, identifying a patient subgroup with an almost 100% treatment failure probability, warranting consideration of LSC measurement incorporation in future AML risk schemes.


Assuntos
Antígenos CD34/metabolismo , Contagem de Células , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/mortalidade , Células-Tronco Neoplásicas/metabolismo , ADP-Ribosil Ciclase 1/metabolismo , Adolescente , Adulto , Idoso , Biomarcadores , Feminino , Citometria de Fluxo , Humanos , Imunofenotipagem , Leucemia Mieloide Aguda/etiologia , Leucemia Mieloide Aguda/terapia , Masculino , Pessoa de Meia-Idade , Nucleofosmina , Prognóstico , Recidiva , Reprodutibilidade dos Testes , Análise de Sobrevida , Adulto Jovem
13.
Leuk Res ; 76: 39-47, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30553189

RESUMO

Flow-cytometric detection of now termed measurable residual disease (MRD) in acute myeloid leukemia (AML) has proven to have an independent prognostic impact. In a previous multicenter study we developed protocols to accurately define leukemia-associated immunophenotypes (LAIPs) at diagnosis. It has, however, not been demonstrated whether the use of the defined LAIPs in the same multicenter setting results in a high concordance between centers in MRD assessment. In the present paper we evaluated whether interpretation of list-mode data (LMD) files, obtained from MRD assessment of previously determined LAIPs during and after treatment, could reliably be performed in a multicenter setting. The percentage of MRD positive cells was simultaneously determined in totally 173 LMD files from 77 AML patients by six participating centers. The quantitative concordance between the six participating centers was meanly 84%, with slight variation of 75%-89%. In addition our data showed that the type and number of LAIPs were of influence on the performance outcome. The highest concordance was observed for LAIPs with cross-lineage expression, followed by LAIPs with an asynchronous antigen expression. Our results imply that immunophenotypic MRD assessment in AML will only be feasible when fully standardized methods are used for reliable multicenter assessment.


Assuntos
Imunofenotipagem , Leucemia Mieloide Aguda/diagnóstico , Neoplasia Residual/diagnóstico , Biomarcadores , Feminino , Citometria de Fluxo/métodos , Humanos , Imunofenotipagem/métodos , Masculino , Sensibilidade e Especificidade
14.
Expert Rev Hematol ; 11(12): 921-935, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30466339

RESUMO

Introduction: Measurable residual disease (MRD) in acute myeloid leukemia (AML) is a rapidly evolving area with many institutes embarking on it, both in academic and pharmaceutical settings. However, there is a multitude of approaches to design, perform, and report flow cytometric MRD. Together with the long-term experience needed, this makes flow cytometric MRD in AML nonstandardized and time-consuming. Areas covered: This paper briefly summarizes critical issues, like sample preparation and transport, markers and fluorochromes of choice, but in particular focuses on the main issues, which includes specificity and sensitivity, hereby providing a new model that may circumvent the main disadvantages of the present approaches. New approaches that may add to the value of flow cytometric MRD includes assessment of leukemia stem cells, MRD in peripheral blood, and approaches to use multidimensional image analysis. Expert commentary: MRD in AML requires standardization/harmonization on many aspects, for which the present paper offers possible guidelines.


Assuntos
Citometria de Fluxo/métodos , Leucemia Mieloide Aguda/diagnóstico , Neoplasia Residual/diagnóstico , Animais , Biomarcadores Tumorais/análise , Citometria de Fluxo/normas , Humanos , Leucemia Mieloide Aguda/patologia , Neoplasia Residual/patologia , Células-Tronco Neoplásicas/patologia , Prognóstico , Manejo de Espécimes/métodos , Manejo de Espécimes/normas
15.
J Vis Exp ; (133)2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29553571

RESUMO

Response criteria in acute myeloid leukemia (AML) has recently been re-established, with morphologic examination utilized to determine whether patients have achieved complete remission (CR). Approximately half of the adult patients who entered CR will relapse within 12 months due to the outgrowth of residual AML cells in the bone marrow. The quantitation of these remaining leukemia cells, known as minimal or measurable residual disease (MRD), can be a robust biomarker for the prediction of these relapses. Moreover, retrospective analysis of several studies has shown that the presence of MRD in the bone marrow of AML patients correlates with poor survival. Not only is the total leukemic population, reflected by cells harboring a leukemia associated immune-phenotype (LAIP), associated with clinical outcome, but so is the immature low frequency subpopulation of leukemia stem cells (LSC), both of which can be monitored through flow cytometry MRD or MRD-like approaches. The availability of sensitive assays that enable detection of residual leukemia (stem) cells on the basis of disease-specific or disease-associated features (abnormal molecular markers or aberrant immunophenotypes) have drastically improved MRD assessment in AML. However, given the inherent heterogeneity and complexity of AML as a disease, methods for sampling bone marrow and performing MRD and LSC analysis should be harmonized when possible. In this manuscript we describe a detailed methodology for adequate bone marrow aspirate sampling, transport, sample processing for optimal multi-color flow cytometry assessment, and gating strategies to assess MRD and LSC to aid in therapeutic decision making for AML patients.


Assuntos
Medula Óssea/metabolismo , Citometria de Fluxo/métodos , Leucemia Mieloide Aguda/diagnóstico , Neoplasia Residual/diagnóstico , Medula Óssea/patologia , Humanos , Imunofenotipagem , Leucemia Mieloide Aguda/patologia , Neoplasia Residual/patologia , Estudos Retrospectivos
16.
Br J Haematol ; 171(2): 227-238, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26104974

RESUMO

Primary resistance and relapses after initial successful treatment are common in acute myeloid leukaemia and therefore outcome remains poor. More accurate risk group stratification and effective personalized risk adapted treatment are necessary to improve outcome. In the last two decades, controversial results have been published concerning the prognostic relevance of CD34 expression. In this study of 706 acute myeloid leukaemia patients, we established a new flow cytometric-based CD34-definition, without use of cut-off values. We discriminated CD34-positive (n = 548) and CD34-negative (n = 158) patients by the presence or absence of neoplastic CD34+ cells, respectively. CD34-status was defined using aberrant immunophenotypes and validated using molecular phenotypes. This new definition of CD34 enables strong prediction of treatment outcome in the entire patient group and in several risk subgroups. Previously observed discrepancies in prognostic impact of CD34 protein expression using cut-offs (5-20%) can now entirely be explained by considering the number of CD34-negative cases. In the total patient group, the absence of neoplastic CD34-positive cells is paralleled by low levels of minimal residual disease, suggesting relative therapy sensitivity and explaining longer survival. Overall, we present CD34 surface expression as a relatively simple, powerful and independent predictor of clinical outcome, now warranting incorporation in acute myeloid leukaemia risk stratification.

17.
PLoS One ; 9(9): e107587, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25244440

RESUMO

INTRODUCTION: Treatment failure in acute myeloid leukemia is probably caused by the presence of leukemia initiating cells, also referred to as leukemic stem cells, at diagnosis and their persistence after therapy. Specific identification of leukemia stem cells and their discrimination from normal hematopoietic stem cells would greatly contribute to risk stratification and could predict possible relapses. RESULTS: For identification of leukemic stem cells, we developed flow cytometric methods using leukemic stem cell associated markers and newly-defined (light scatter) aberrancies. The nature of the putative leukemic stem cells and normal hematopoietic stem cells, present in the same patient's bone marrow, was demonstrated in eight patients by the presence or absence of molecular aberrancies and/or leukemic engraftment in NOD-SCID IL-2Rγ-/- mice. At diagnosis (n=88), the frequency of the thus defined neoplastic part of CD34+CD38- putative stem cell compartment had a strong prognostic impact, while the neoplastic parts of the CD34+CD38+ and CD34- putative stem cell compartments had no prognostic impact at all. After different courses of therapy, higher percentages of neoplastic CD34+CD38- cells in complete remission strongly correlated with shorter patient survival (n=91). Moreover, combining neoplastic CD34+CD38- frequencies with frequencies of minimal residual disease cells (n=91), which reflect the total neoplastic burden, revealed four patient groups with different survival. CONCLUSION AND PERSPECTIVE: Discrimination between putative leukemia stem cells and normal hematopoietic stem cells in this large-scale study allowed to demonstrate the clinical importance of putative CD34+CD38- leukemia stem cells in AML. Moreover, it offers new opportunities for the development of therapies directed against leukemia stem cells, that would spare normal hematopoietic stem cells, and, moreover, enables in vivo and ex vivo screening for potential efficacy and toxicity of new therapies.


Assuntos
Células-Tronco Hematopoéticas/patologia , Leucemia Mieloide Aguda/diagnóstico , Recidiva Local de Neoplasia/diagnóstico , Células-Tronco Neoplásicas/patologia , ADP-Ribosil Ciclase 1/metabolismo , Adolescente , Adulto , Animais , Antígenos CD34/metabolismo , Biomarcadores , Contagem de Células , Células-Tronco Hematopoéticas/metabolismo , Humanos , Imunofenotipagem , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/metabolismo , Prognóstico , Adulto Jovem
18.
Pediatr Blood Cancer ; 61(10): 1754-60, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24976003

RESUMO

BACKGROUND: This Phase 2 study tested the tolerability and efficacy of bortezomib combined with reinduction chemotherapy for pediatric patients with relapsed, refractory or secondary acute myeloid leukemia (AML). Correlative studies measured putative AML leukemia initiating cells (AML-LIC) before and after treatment. PROCEDURE: Patients with <400 mg/m(2) prior anthracycline received bortezomib combined with idarubicin (12 mg/m(2) days 1-3) and low-dose cytarabine (100 mg/m(2) days 1-7) (Arm A). Patients with ≥400 mg/m(2) prior anthracycline received bortezomib with etoposide (100 mg/m(2) on days 1-5) and high-dose cytarabine (1 g/m(2) every 12 hours for 10 doses) (Arm B). RESULTS: Forty-six patients were treated with 58 bortezomib-containing cycles. The dose finding phase of Arm B established the recommended Phase 2 dose of bortezomib at 1.3 mg/m(2) on days 1, 4, and 8 with Arm B chemotherapy. Both arms were closed after failure to meet predetermined efficacy thresholds during the first stage of the two-stage design. The complete response (CR + CRp) rates were 29% for Arm A and 43% for Arm B. Counting additional CRi responses (CR with incomplete neutrophil recovery), the overall CR rates were 57% for Arm A and 48% for Arm B. The 2-year overall survival (OS) was 39 ± 15%. Correlative studies showed that LIC depletion after the first cycle was associated with clinical response. CONCLUSION: Bortezomib is tolerable when added to chemotherapy regimens for relapsed pediatric AML, but the regimens did not exceed preset minimum response criteria to allow continued accrual. This study also suggests that AML-LIC depletion has prognostic value.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Adolescente , Animais , Ácidos Borônicos/administração & dosagem , Ácidos Borônicos/efeitos adversos , Bortezomib , Criança , Pré-Escolar , Citarabina/administração & dosagem , Citarabina/efeitos adversos , Relação Dose-Resposta a Droga , Etoposídeo/administração & dosagem , Etoposídeo/efeitos adversos , Feminino , Humanos , Idarubicina/administração & dosagem , Idarubicina/efeitos adversos , Lactente , Estimativa de Kaplan-Meier , Leucemia Mieloide Aguda/mortalidade , Masculino , Recidiva Local de Neoplasia/tratamento farmacológico , Pirazinas/administração & dosagem , Pirazinas/efeitos adversos , Coelhos , Terapia de Salvação/métodos , Resultado do Tratamento , Adulto Jovem
19.
Leuk Res ; 38(6): 691-3, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24731748

RESUMO

The presence of class II-associated invariant chain (CLIP) on leukemic cells is negatively associated with clinical outcome in untreated acute myeloid leukemia (AML). CLIP plays a role in the immune escape of leukemic cells, suggesting that it impairs the immunogenicity of minimal residual disease (MRD) cells causing a relapse. Here, we demonstrate that CLIP expression on leukemia-associated phenotype (LAP)-positive cells during follow-up is significantly correlated with a shortened relapse-free survival, even in those patients who are generally considered as MRD(low) (0.01-0.1% LAP(+) cells). Consequently, CLIP evaluation could be of additional value in the evaluation of MRD to predict a relapse of AML.


Assuntos
Antígenos de Diferenciação de Linfócitos B/fisiologia , Antígenos de Histocompatibilidade Classe II/fisiologia , Leucemia Mieloide Aguda/imunologia , Antígenos de Diferenciação de Linfócitos B/análise , Antígenos de Histocompatibilidade Classe II/análise , Humanos , Leucemia Mieloide Aguda/mortalidade , Neoplasia Residual/imunologia , Recidiva , Risco
20.
PLoS One ; 8(11): e78897, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244383

RESUMO

Persistence of leukemic stem cells (LSC) after chemotherapy is thought to be responsible for relapse and prevents the curative treatment of acute myeloid leukemia (AML) patients. LSC and normal hematopoietic stem cells (HSC) share many characteristics and co-exist in the bone marrow of AML patients. For the development of successful LSC-targeted therapy, enabling eradication of LSC while sparing HSC, the identification of differences between LSC and HSC residing within the AML bone marrow is crucial. For identification of these LSC targets, as well as for AML LSC characterization, discrimination between LSC and HSC within the AML bone marrow is imperative. Here we show that normal CD34+CD38- HSC present in AML bone marrow, identified by their lack of aberrant immunophenotypic and molecular marker expression and low scatter properties, are a distinct sub-population of cells with high ALDH activity (ALDH(bright)). The ALDH(bright) compartment contains, besides normal HSC, more differentiated, normal CD34+CD38+ progenitors. Furthermore, we show that in CD34-negative AML, containing solely normal CD34+ cells, LSC are CD34- and ALDH(low). In CD34-positive AML, LSC are also ALDH(low) but can be either CD34+ or CD34-. In conclusion, although malignant AML blasts have varying ALDH activity, a common feature of all AML cases is that LSC have lower ALDH activity than the CD34+CD38- HSC that co-exist with these LSC in the AML bone marrow. Our findings form the basis for combined functionally and immunophenotypically based identification and purification of LSC and HSC within the AML bone marrow, aiming at development of highly specific anti-LSC therapy.


Assuntos
Aldeído Desidrogenase/metabolismo , Células-Tronco Hematopoéticas/enzimologia , Leucemia Mieloide Aguda/enzimologia , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/enzimologia , ADP-Ribosil Ciclase 1/metabolismo , Antígenos CD34/metabolismo , Feminino , Células-Tronco Hematopoéticas/patologia , Humanos , Leucemia Mieloide Aguda/patologia , Masculino , Células-Tronco Neoplásicas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...