Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 33(4): 355-373, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37944084

RESUMO

GRID1 and GRID2 encode the enigmatic GluD1 and GluD2 proteins, which form tetrameric receptors that play important roles in synapse organization and development of the central nervous system. Variation in these genes has been implicated in neurodevelopmental phenotypes. We evaluated GRID1 and GRID2 human variants from the literature, ClinVar, and clinical laboratories and found that many of these variants reside in intolerant domains, including the amino terminal domain of both GRID1 and GRID2. Other conserved regions, such as the M3 transmembrane domain, show different intolerance between GRID1 and GRID2. We introduced these variants into GluD1 and GluD2 cDNA and performed electrophysiological and biochemical assays to investigate the mechanisms of dysfunction of GRID1/2 variants. One variant in the GRID1 distal amino terminal domain resides at a position predicted to interact with Cbln2/Cbln4, and the variant disrupts complex formation between GluD1 and Cbln2, which could perturb its role in synapse organization. We also discovered that, like the lurcher mutation (GluD2-A654T), other rare variants in the GRID2 M3 domain create constitutively active receptors that share similar pathogenic phenotypes. We also found that the SCHEMA schizophrenia M3 variant GluD1-A650T produced constitutively active receptors. We tested a variety of compounds for their ability to inhibit constitutive currents of GluD receptor variants and found that pentamidine potently inhibited GluD2-T649A constitutive channels (IC50 50 nM). These results identify regions of intolerance to variation in the GRID genes, illustrate the functional consequences of GRID1 and GRID2 variants, and suggest how these receptors function normally and in disease.


Assuntos
Sistema Nervoso Central , Receptores de Glutamato , Humanos , Sistema Nervoso Central/metabolismo , Mutação , Domínios Proteicos , Receptores de Glutamato/metabolismo
2.
Eur J Med Chem ; 201: 112479, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32534343

RESUMO

The C-X-C chemokine receptor type 4 (CXCR4) is a potential therapeutic target for HIV infection, metastatic cancer, and inflammatory autoimmune diseases. In this study, we screened the ZINC chemical database for novel CXCR4 modulators through a series of in silico guided processes. After evaluating the screened compounds for their binding affinities to CXCR4 and inhibitory activities against the chemoattractant CXCL12, we identified a hit compound (ZINC 72372983) showing 100 nM affinity and 69% chemotaxis inhibition at the same concentration (100 nM). To increase the potency of our hit compound, we explored the protein-ligand interactions at an atomic level using molecular dynamics simulation which enabled us to design and synthesize a novel compound (Z7R) with nanomolar affinity (IC50 = 1.25 nM) and improved chemotaxis inhibition (78.5%). Z7R displays promising anti-inflammatory activity (50%) in a mouse edema model by blocking CXCR4-expressed leukocytes, being supported by our immunohistochemistry study.


Assuntos
Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Piperidinas/uso terapêutico , Receptores CXCR4/metabolismo , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/metabolismo , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Piperidinas/síntese química , Piperidinas/metabolismo , Ligação Proteica , Relação Estrutura-Atividade
3.
J Gen Physiol ; 152(4)2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32221541

RESUMO

The NMDA receptor (NMDAR) is an ionotropic glutamate receptor formed from the tetrameric assembly of GluN1 and GluN2 subunits. Within the flexible linker between the agonist binding domain (ABD) and the M1 helix of the pore-forming transmembrane helical bundle lies a two-turn, extracellular pre-M1 helix positioned parallel to the plasma membrane and in van der Waals contact with the M3 helix thought to constitute the channel gate. The pre-M1 helix is tethered to the bilobed ABD, where agonist-induced conformational changes initiate activation. Additionally, it is a locus for de novo mutations associated with neurological disorders, is near other disease-associated de novo sites within the transmembrane domain, and is a structural determinant of subunit-selective modulators. To investigate the role of the pre-M1 helix in channel gating, we performed scanning mutagenesis across the GluN2A pre-M1 helix and recorded whole-cell macroscopic and single channel currents from HEK293 cell-attached patches. We identified two residues at which mutations perturb channel open probability, the mean open time, and the glutamate deactivation time course. We identified a subunit-specific network of aromatic amino acids located in and around the GluN2A pre-M1 helix to be important for gating. Based on these results, we are able to hypothesize about the role of the pre-M1 helix in other NMDAR subunits based on sequence and structure homology. Our results emphasize the role of the pre-M1 helix in channel gating, implicate the surrounding amino acid environment in this mechanism, and suggest unique subunit-specific contributions of pre-M1 helices to GluN1 and GluN2 gating.


Assuntos
Ativação do Canal Iônico/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sequência de Aminoácidos , Aminoácidos/metabolismo , Animais , Sítios de Ligação/fisiologia , Linhagem Celular , Células HEK293 , Humanos , Domínios Proteicos/fisiologia , Subunidades Proteicas/metabolismo , Xenopus
4.
Structure ; 28(2): 196-205.e3, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31831214

RESUMO

Understanding how changes in amino acid sequence alter protein dynamics and allosteric signaling would illuminate strategies for protein design. To gain insight into this process, we have combined molecular dynamics simulations with ancestral sequence reconstruction to explore conformational dynamics in two ancient steroid receptors (SRs) to determine how allosteric signaling pathways were altered over evolution to generate hormone specificity. In a broad panel of aromatized and non-aromatized hormones, we investigate inter-residue contacts that facilitate allosteric signaling. This work reveals interhelical interactions that act as ligand sensors and explain the structural and dynamical basis for ligand discrimination in SRs. These sensors are part of a conserved SR allosteric network and persist over long simulation time scales, indicating that evolutionary substitutions rewire ancient SR networks to achieve functional evolution. This powerful combination of computation, ancestral reconstruction, and biochemistry may illuminate allosteric mechanisms and functional evolution in other protein families.


Assuntos
Receptores de Esteroides/química , Receptores de Esteroides/metabolismo , Regulação Alostérica , Animais , Evolução Molecular , Humanos , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Filogenia , Conformação Proteica , Estrutura Secundária de Proteína , Receptores de Esteroides/genética , Transdução de Sinais
5.
ACS Med Chem Lett ; 10(3): 248-254, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30891121

RESUMO

The N-methyl-d-aspartate receptor plays a critical role in central nervous system processes. Its diverse properties, as well as hypothesized role in neurological disease, render NMDA receptors a target of interest for the development of therapeutically relevant modulators. A number of subunit-selective modulators have been reported in the literature, one of which is TCN-201, a GluN2A-selective negative allosteric modulator. Recently, it was determined from a cocrystallization study of TCN-201 with the NMDA receptor that a unique active pose exists in which the sulfonamide group of TCN-201 incorporates a π-π stacking interaction between the two adjacent aryl rings that allows it to make important contacts with the protein. This finding led us to investigate whether this unique structural feature of the diaryl sulfonamide could be incorporated into other modulators that act on distinct pockets. To test whether this idea might have more general utility, we added an aryl ring plus the sulfonamide linker modification to a previously published series of GluN2C- and GluN2D-selective negative allosteric modulators that bind to an entirely different pocket. Herein, we report data suggesting that this structural modification of the NAB-14 series of modulators was tolerated and, in some instances, enhanced potency. These results suggest that this motif may be a reliable means for introducing a π-π stacking element to molecular scaffolds that could improve activity if it allowed access to ligand-protein interactions not accessible from one planar aromatic group.

6.
J Physiol ; 596(17): 4057-4089, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29917241

RESUMO

KEY POINTS: The kinetics of NMDA receptor (NMDAR) signalling are a critical aspect of the physiology of excitatory synaptic transmission in the brain. Here we develop a mechanistic description of NMDAR function based on the receptor tetrameric structure and the principle that each agonist-bound subunit must undergo some rate-limiting conformational change after agonist binding, prior to channel opening. By fitting this mechanism to single channel data using a new MATLAB-based software implementation of maximum likelihood fitting with correction for limited time resolution, rate constants were derived for this mechanism that reflect distinct structural changes and predict the properties of macroscopic and synaptic NMDAR currents. The principles applied here to develop a mechanistic description of the heterotetrameric NMDAR, and the software used in this analysis, can be equally applied to other heterotetrameric glutamate receptors, providing a unifying mechanistic framework to understanding the physiology of glutamate receptor signalling in the brain. ABSTRACT: NMDA receptors (NMDARs) are tetrameric complexes comprising two glycine-binding GluN1 and two glutamate-binding GluN2 subunits. Four GluN2 subunits encoded by different genes can produce up to 10 different di- and triheteromeric receptors. In addition, some neurological patients contain a de novo mutation or inherited rare variant in only one subunit. There is currently no mechanistic framework to describe tetrameric receptor function that can be extended to receptors with two different GluN1 or GluN2 subunits. Here we use the structural features of glutamate receptors to develop a mechanism describing both single channel and macroscopic NMDAR currents. We propose that each agonist-bound subunit undergoes some rate-limiting conformational change after agonist binding, prior to channel opening. We hypothesize that this conformational change occurs within a triad of interactions between a short helix preceding the M1 transmembrane helix, the highly conserved M3 motif encoded by the residues SYTANLAAF, and the linker preceding the M4 transmembrane helix of the adjacent subunit. Molecular dynamics simulations suggest that pre-M1 helix motion is uncorrelated between subunits, which we interpret to suggest independent subunit-specific conformational changes may influence these pre-gating steps. According to this interpretation, these conformational changes are the main determinants of the key kinetic properties of NMDA receptor activation following agonist binding, and so these steps sculpt their physiological role. We show that this structurally derived tetrameric model describes both single channel and macroscopic data, giving a new approach to interpreting functional properties of synaptic NMDARs that provides a logical framework to understanding receptors with non-identical subunits.


Assuntos
Ácido Glutâmico/metabolismo , Ativação do Canal Iônico , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Conformação Proteica , Multimerização Proteica , Subunidades Proteicas
7.
Elife ; 72018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29792594

RESUMO

N-methyl-d-aspartate receptors (NMDARs) are an important receptor in the brain and have been implicated in multiple neurological disorders. Many non-selective NMDAR-targeting drugs are poorly tolerated, leading to efforts to target NMDAR subtypes to improve the therapeutic index. We describe here a series of negative allosteric NMDAR modulators with submaximal inhibition at saturating concentrations. Modest changes to the chemical structure interconvert negative and positive modulation. All modulators share the ability to enhance agonist potency and are use-dependent, requiring the binding of both agonists before modulators act with high potency. Data suggest that these modulators, including both enantiomers, bind to the same site on the receptor and share structural determinants of action. Due to the modulator properties, submaximal negative modulators in this series may spare NMDAR at the synapse, while augmenting the response of NMDAR in extrasynaptic spaces. These modulators could serve as useful tools to probe the role of extrasynaptic NMDARs.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Neurotransmissores/metabolismo , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Sítios de Ligação/efeitos dos fármacos , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Humanos , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Xenopus
8.
Mol Pharmacol ; 93(2): 141-156, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29242355

RESUMO

N-methyl-d-aspartate (NMDA) receptors are ligand-gated, cation-selective channels that mediate a slow component of excitatory synaptic transmission. Subunit-selective positive allosteric modulators of NMDA receptor function have therapeutically relevant effects on multiple processes in the brain. A series of pyrrolidinones, such as PYD-106, that selectively potentiate NMDA receptors that contain the GluN2C subunit have structural determinants of activity that reside between the GluN2C amino terminal domain and the GluN2C agonist binding domain, suggesting a unique site of action. Here we use molecular biology and homology modeling to identify residues that line a candidate binding pocket for GluN2C-selective pyrrolidinones. We also show that occupancy of only one site in diheteromeric receptors is required for potentiation. Both GluN2A and GluN2B can dominate the sensitivity of triheteromeric receptors to eliminate the actions of pyrrolidinones, thus rendering this series uniquely sensitive to subunit stoichiometry. We experimentally identified NMR-derived conformers in solution, which combined with molecular modeling allows the prediction of the bioactive binding pose for this series of GluN2C-selective positive allosteric modulators of NMDA receptors. These data advance our understanding of the site and nature of the ligand-protein interaction for GluN2C-selective positive allosteric modulators for NMDA receptors.


Assuntos
Receptores de N-Metil-D-Aspartato/metabolismo , Regulação Alostérica , Animais , Sítios de Ligação , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Simulação de Dinâmica Molecular , Técnicas de Patch-Clamp , Conformação Proteica , Espectroscopia de Prótons por Ressonância Magnética , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Reprodutibilidade dos Testes , Estereoisomerismo , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...