Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuromodulation ; 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37269282

RESUMO

OBJECTIVE: In adults with cervical spinal cord injury (SCI), transcutaneous spinal stimulation (scTS) has improved upper extremity strength and control. This novel noninvasive neurotherapeutic approach combined with training may modulate the inherent developmental plasticity of children with SCI, providing even greater improvements than training or stimulation alone. Because children with SCI represent a vulnerable population, we first must establish the safety and feasibility of any potential novel therapeutic approach. The objectives of this pilot study were to determine the safety, feasibility, and proof of principle of cervical and thoracic scTS for short-term effect on upper extremity strength in children with SCI. MATERIALS AND METHODS: In this nonrandomized, within-subject repeated measure design, seven participants with chronic cervical SCI performed upper extremity motor tasks without and with cervical (C3-C4 and C6-C7) and thoracic (T10-T11) site scTS. Safety and feasibility of using cervical and thoracic sites scTS were determined by the frequency count of anticipated and unanticipated risks (eg, pain, numbness). Proof-of-principle concept was tested via change in force production during hand motor tasks. RESULTS: All seven participants tolerated cervical and thoracic scTS across the three days, with a wide range of stimulation intensities (cervical sites = 20-70 mA and thoracic site = 25-190 mA). Skin redness at the stimulation sites was observed in four of 21 assessments (19%) and dissipated in a few hours. No episode of autonomic dysreflexia was observed or reported. Hemodynamic parameters (systolic blood pressure and heart rate) remained within stable limits (p > 0.05) throughout the assessment time points at baseline, with scTS, and after the experiment. Hand-grip and wrist-extension strength increased (p < 0.05) with scTS. CONCLUSIONS: We indicated that short-term application of scTS via two cervical and one thoracic site is safe and feasible in children with SCI and resulted in immediate improvements in hand-grip and wrist-extension strength in the presence of scTS. CLINICAL TRIAL REGISTRATION: The Clinicaltrials.gov registration number for the study is NCT04032990.

2.
Top Spinal Cord Inj Rehabil ; 29(1): 16-32, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819932

RESUMO

Neuromodulation via spinal stimulation is a promising therapy that can augment the neuromuscular capacity for voluntary movements, standing, stepping, and posture in individuals with spinal cord injury (SCI). The spinal locomotor-related neuronal network known as a central pattern generator (CPG) can generate a stepping-like motor output in the absence of movement-related afferent signals from the limbs. Using epidural stimulation (EP) in conjunction with activity-based locomotor training (ABLT), the neural circuits can be neuromodulated to facilitate the recovery of locomotor functions in persons with SCI. Recently, transcutaneous spinal stimulation (scTS) has been developed as a noninvasive alternative to EP. Early studies of scTS at thoracolumbar, coccygeal, and cervical regions have demonstrated its effectiveness in producing voluntary leg movements, posture control, and independent standing and improving upper extremity function in adults with chronic SCI. In pediatric studies, the technology of spinal neuromodulation is not yet widespread. There are a limited number of publications reporting on the use of scTS in children and adolescents with either cerebral palsy, spina bifida, or SCI.


Assuntos
Traumatismos da Medula Espinal , Humanos , Adulto , Criança , Adolescente , Movimento , Postura
3.
Front Bioeng Biotechnol ; 10: 868684, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35497350

RESUMO

Chronic low back pain (LBP) is a leading cause of disability and opioid prescriptions worldwide, representing a significant medical and socioeconomic problem. Clinical heterogeneity of LBP limits accurate diagnosis and precise treatment planning, culminating in poor patient outcomes. A current priority of LBP research is the development of objective, multidimensional assessment tools that subgroup LBP patients based on neurobiological pain mechanisms, to facilitate matching patients with the optimal therapies. Using unsupervised machine learning on full body biomechanics, including kinematics, dynamics, and muscle forces, captured with a marker-less depth camera, this study identified a forward-leaning sit-to-stand strategy (STS) as a discriminating movement biomarker for LBP subjects. A forward-leaning STS strategy, as opposed to a vertical rise strategy seen in the control participants, is less efficient and results in increased spinal loads. Inefficient STS with the subsequent higher spinal loading may be a biomarker of poor motor control in LBP patients as well as a potential source of the ongoing symptomology.

4.
Eur Spine J ; 31(8): 2046-2056, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35333958

RESUMO

PURPOSE: The paraspinal muscles (PSM) are a key feature potentially related to low back pain (LBP), and their structure and composition can be quantified using MRI. Most commonly, quantifying PSM measures across individual muscles and individual spinal levels renders numerous separate metrics that are analyzed in isolation. However, comprehensive multivariate approaches would be more appropriate for analyzing the PSM within an individual. To establish and test these methods, we hypothesized that multivariate summaries of PSM MRI measures would associate with the presence of LBP symptoms (i.e., pain intensity). METHODS: We applied hierarchical multiple factor analysis (hMFA), an unsupervised integrative method, to clinical PSM MRI data from unique cohort datasets including a longitudinal cohort of astronauts with pre- and post-spaceflight data and a cohort of chronic LBP subjects and asymptomatic controls. Three specific use cases were investigated: (1) predicting longitudinal changes in pain using combinations of baseline PSM measures; (2) integrating baseline and post-spaceflight MRI to assess longitudinal change in PSM and how it relates to pain; and (3) integrating PSM quality and adjacent spinal pathology between LBP patients and controls. RESULTS: Overall, we found distinct complex relationships with pain intensity between particular muscles and spinal levels. Subjects with high asymmetry between left and right lean muscle composition and differences between spinal segments PSM quality and structure are more likely to increase in pain reported outcome after prolonged time in microgravity. Moreover, changes in PSM quality and structure between pre and post-spaceflight relate to increase in pain after prolonged microgravity. Finally, we show how unsupervised hMFA recapitulates previous research on the association of CEP damage and LBP diagnostic. CONCLUSION: Our analysis considers the spine as a multi-segmental unit as opposed to a series of discrete and isolated spine segments. Integrative and multivariate approaches can be used to distill large and complex imaging datasets thereby improving the clinical utility of MRI-based biomarkers, and providing metrics for further analytical goals, including phenotyping.


Assuntos
Dor Lombar , Ausência de Peso , Humanos , Dor Lombar/diagnóstico , Imageamento por Ressonância Magnética/métodos , Músculos Paraespinais/patologia , Aprendizado de Máquina não Supervisionado
5.
Spinal Cord ; 60(4): 312-319, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34561547

RESUMO

STUDY DESIGN: Preclinical pilot study. OBJECTIVES: To test the hypothesis that spinal opioidergic circuitry contributes to muscle stretch-induced locomotor deficits. SETTING: Kentucky Spinal Cord Injury Research Center, Louisville, KY, USA. METHODS: A pilot study with eight female Sprague-Dawley rats that received 25 g-cm T10 contusion injuries and recovered for 5 weeks. Rats were divided into two groups with one group receiving subcutaneous injections of naltrexone dissolved in saline (15 mg/kg) or an equal volume of saline. Each group received a daily 24-minute stretching protocol during weeks 6, 8, and 11 post-injury. Locomotor function was assessed throughout using the BBB Open Field Locomotor Scale. RESULTS: Consistent with previous findings, stretching reduced locomotor function in both naltrexone and saline groups. However, the loss of locomotor function appeared earlier in the naltrexone group. Animals in both groups had a similar rate of recovery following the termination of stretching. Interestingly, the administration of naltrexone did not influence acute thermal cutaneous nociceptive responses as measured by a tail-flick assay but caused a significant increase in spasticity following stretch. CONCLUSIONS: The results of this study suggest that the endogenous opioid system plays a role in modulating the negative impact of muscle stretch on spinal cord motor circuitry that is vulnerable due to loss of descending input. The observed actions of the broad-spectrum opioid antagonist naltrexone imply that pharmaceuticals targeting the endogenous opioid system post-SCI may have unintended consequences.


Assuntos
Antagonistas de Entorpecentes , Traumatismos da Medula Espinal , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Animais , Modelos Animais de Doenças , Feminino , Membro Posterior , Humanos , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Projetos Piloto , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/fisiologia , Medula Espinal , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/tratamento farmacológico
6.
Nat Commun ; 12(1): 5850, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615867

RESUMO

In children with spinal cord injury (SCI), scoliosis due to trunk muscle paralysis frequently requires surgical treatment. Transcutaneous spinal stimulation enables trunk stability in adults with SCI and may pose a non-invasive preventative therapeutic alternative. This non-randomized, non-blinded pilot clinical trial (NCT03975634) determined the safety and efficacy of transcutaneous spinal stimulation to enable upright sitting posture in 8 children with trunk control impairment due to acquired SCI using within-subject repeated measures study design. Primary safety and efficacy outcomes (pain, hemodynamics stability, skin irritation, trunk kinematics) and secondary outcomes (center of pressure displacement, compliance rate) were assessed within the pre-specified endpoints. One participant did not complete the study due to pain with stimulation on the first day. One episode of autonomic dysreflexia during stimulation was recorded. Following hemodynamic normalization, the participant completed the study. Overall, spinal stimulation was well-tolerated and enabled upright sitting posture in 7 out of the 8 participants.


Assuntos
Postura/fisiologia , Traumatismos da Medula Espinal/terapia , Coluna Vertebral/fisiologia , Adolescente , Fenômenos Biomecânicos , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Projetos Piloto
7.
Exp Neurol ; 318: 267-276, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30880143

RESUMO

In the course of investigating how common clinical treatments and adaptive technologies affect recovery after spinal cord injury (SCI), we discovered that a clinically-modeled hindlimb stretching protocol dramatically, but transiently, reduces locomotor function. Nociceptive sensory input is capable of altering motor output at the spinal level, and nociceptive neurons are sensitized after SCI. Here we tested the hypotheses that stretch-induced locomotor deficits are dependent on nociceptive afferents by depleting TRPV1+ sensory afferents using capsaicin injections in neonatal rats. Following maturation, animals received 25g-cm contusive SCI at T10. After plateau of locomotor recovery at 6 weeks, daily stretching was performed for 3 weeks, followed by 2 weeks without stretch, and again for two additional weeks. Animals were sacrificed 2 h after the last stretching session for histological assessments. Consistent with previous findings, stretch-induced drops in locomotor function were observed in nociceptor-intact animals but were nearly absent in nociceptor-depleted animals. These functional changes were accompanied by corresponding increases in the number of c-Fos+ nuclei throughout the lumbar enlargement. As expected, nociceptor-depleted animals had very little CGRP+ axonal innervation of the dorsal horn. Nociceptor-intact stretched animals had significantly higher levels of CGRP+ as compared to non-stretched SCI rats, suggesting that stretching promoted intraspinal CGRP+ sprouting. These results indicate that stretch-induced locomotor dysfunction in animals with incomplete SCI involves C-fibers, adding a negative post-SCI role to their adaptive roles (e.g., bladder control), and suggesting that the clinical use of muscle stretching to combat contractures and spasticity may be unintentionally detrimental to locomotor function.


Assuntos
Locomoção/fisiologia , Exercícios de Alongamento Muscular/efeitos adversos , Nociceptores , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Membro Posterior , Neurônios Aferentes/fisiologia , Ratos , Ratos Sprague-Dawley
8.
Spinal Cord ; 56(6): 560-568, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29459656

RESUMO

STUDY DESIGN: Experimental Study. OBJECTIVES: To characterize the specific hindlimb electromyographic (EMG) patterns in response to muscle stretch and to measure the applied forces during stretching in the rat model of moderate SCI. SETTING: Kentucky Spinal Cord Injury Research Center, Louisville, KY, USA. METHODS: Female Sprague Dawley rats (n = 4) were instrumented for telemetry-based EMG recording (right rectus femoris and biceps femoris) and received a moderate T10 spinal cord injury (SCI). The major hindlimb muscle groups were stretched using our clinically modeled protocol. The EMG responses were recorded biweekly for 8 weeks. The forces applied during stretching were measured using a custom-designed glove. Locomotor function was assessed using the BBB Open Field Locomotor Scale, 3D kinematics and gait analysis. RESULTS: Three main EMG patterns in response to stretch were identified: clonic-like, air-stepping, and spasms. Torques applied during stretching ranged from 0.4-8 N•cm, and with the exception of the quadriceps, did not change significantly over the weeks of stretching. Two stretching sessions a week did not result in a significant disruption to locomotor function. CONCLUSIONS: Stretching evokes EMG patterns in rats similar to those reported in humans including clonus and spasms. The torques used during stretching are comparable, based on the ratio of torque to body weight, to the few previously published studies that measured the forces and/or torques applied by physical therapists when stretching patients. Future studies are warranted to fully explore the impact of muscle stretch on spinal cord function after injury. SPONSORSHIP: DoD, KSCHIRT, NIH.


Assuntos
Eletromiografia , Membro Posterior/fisiopatologia , Músculo Esquelético/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Fenômenos Biomecânicos , Modelos Animais de Doenças , Feminino , Marcha/fisiologia , Exercícios de Alongamento Muscular , Ratos Sprague-Dawley , Espasmo/fisiopatologia , Vértebras Torácicas
9.
J Neurotrauma ; 34(12): 2086-2091, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28288544

RESUMO

Joint contractures and spasticity are two common secondary complications of a severe spinal cord injury (SCI), which can significantly reduce quality of life, and stretching is one of the top strategies for rehabilitation of these complications. We have previously shown that a daily static stretching protocol administered to rats at either acute or chronic time points after a moderate or moderate-severe T10 SCI significantly disrupts their hindlimb locomotor function. The objective of the current study was to examine the effects of dynamic range of motion (ROM) stretching on the locomotor function of rats with SCI as an alternative to static stretching. Starting at 6 weeks post-injury (T10 moderate contusion) eight adult Sprague-Dawley rats were subjected to hindlimb stretching for 4 weeks. Our standard stretching protocol (six maneuvers to stretch the major hindlimb muscle groups) was modified from 1 min static stretch-and-hold at the end ROM of each stretch position to a dynamic 2 sec hold, 1 sec release rhythm repeated for a duration of 1 min. Four weeks of daily (5 days/week) dynamic stretching led to significant disruption of locomotor function as assessed by the Basso, Beattie, Bresnahan (BBB) Open Field Locomotor Scale and three-dimensional (3D) kinematic and gait analyses. In addition, we identified and analyzed an apparently novel hindlimb response to dynamic stretch that resembles human clonus. The results of the current study extend the observation of the stretching phenomenon to a new modality of stretching that is also commonly used in SCI rehabilitation. Although mechanisms and clinical relevance still need to be established, our findings continue to raise concerns that stretching as a therapy can potentially hinder aspects of locomotor recovery.


Assuntos
Membro Posterior/fisiopatologia , Locomoção/fisiologia , Exercícios de Alongamento Muscular/efeitos adversos , Amplitude de Movimento Articular/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/reabilitação
10.
J Neurotrauma ; 34(3): 661-670, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27196003

RESUMO

After spinal cord injury (SCI) muscle contractures develop in the plegic limbs of many patients. Physical therapists commonly use stretching as an approach to avoid contractures and to maintain the extensibility of soft tissues. We found previously that a daily stretching protocol has a negative effect on locomotor recovery in rats with mild thoracic SCI. The purpose of the current study was to determine the effects of stretching on locomotor function at acute and chronic time points after moderately severe contusive SCI. Female Sprague-Dawley rats with 25 g-cm T10 contusion injuries received our standard 24-min stretching protocol starting 4 days (acutely) or 10 weeks (chronically) post-injury (5 days/week for 5 or 4 weeks, respectively). Locomotor function was assessed using the BBB (Basso, Beattie, and Bresnahan) Open Field Locomotor Scale, video-based kinematics, and gait analysis. Locomotor deficits were evident in the acute animals after only 5 days of stretching and increasing the perceived intensity of stretching at week 4 resulted in greater impairment. Stretching initiated chronically resulted in dramatic decrements in locomotor function because most animals had BBB scores of 0-3 for weeks 2, 3, and 4 of stretching. Locomotor function recovered to control levels for both groups within 2 weeks once daily stretching ceased. Histological analysis revealed no apparent signs of overt and persistent damage to muscles undergoing stretching. The current study extends our observations of the stretching phenomenon to a more clinically relevant moderately severe SCI animal model. The results are in agreement with our previous findings and further demonstrate that spinal cord locomotor circuitry is especially vulnerable to the negative effects of stretching at chronic time points. While the clinical relevance of this phenomenon remains unknown, we speculate that stretching may contribute to the lack of locomotor recovery in some patients.


Assuntos
Membro Posterior/fisiologia , Locomoção/fisiologia , Reflexo de Estiramento/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/reabilitação , Animais , Potencial Evocado Motor/fisiologia , Feminino , Marcha/fisiologia , Membro Posterior/inervação , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...