Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 42(1): 210, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596623

RESUMO

Despite tremendous progress in deciphering breast cancer at the genomic level, the pronounced intra- and intertumoral heterogeneity remains a major obstacle to the advancement of novel and more effective treatment approaches. Frequent treatment failure and the development of treatment resistance highlight the need for patient-derived tumor models that reflect the individual tumors of breast cancer patients and allow a comprehensive analyses and parallel functional validation of individualized and therapeutically targetable vulnerabilities in protein signal transduction pathways. Here, we introduce the generation and application of breast cancer patient-derived 3D microtumors (BC-PDMs). Residual fresh tumor tissue specimens were collected from n = 102 patients diagnosed with breast cancer and subjected to BC-PDM isolation. BC-PDMs retained histopathological characteristics, and extracellular matrix (ECM) components together with key protein signaling pathway signatures of the corresponding primary tumor tissue. Accordingly, BC-PDMs reflect the inter- and intratumoral heterogeneity of breast cancer and its key signal transduction properties. DigiWest®-based protein expression profiling of identified treatment responder and non-responder BC-PDMs enabled the identification of potential resistance and sensitivity markers of individual drug treatments, including markers previously associated with treatment response and yet undescribed proteins. The combination of individualized drug testing with comprehensive protein profiling analyses of BC-PDMs may provide a valuable complement for personalized treatment stratification and response prediction for breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Mama , Genômica , Transdução de Sinais
2.
Commun Biol ; 6(1): 472, 2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37117634

RESUMO

The examination of post-mortem brain tissue suggests synaptic loss as a central pathological hallmark of schizophrenia spectrum (SCZ), which is potentially related to activated microglia and increased inflammation. Induced pluripotent stem cells serve as a source for neurons and microglia-like cells to address neuron-microglia interactions. Here, we present a co-culture model of neurons and microglia, both of human origin, to show increased susceptibility of neurons to microglia-like cells derived from SCZ patients. Analysis of IBA-1 expression, NFκB signaling, transcription of inflammasome-related genes, and caspase-1 activation shows that enhanced, intrinsic inflammasome activation in patient-derived microglia exacerbates neuronal deficits such as synaptic loss in SCZ. Anti-inflammatory pretreatment of microglia with minocycline specifically rescued aberrant synapse loss in SCZ and reduced microglial activation. These findings open up possibilities for further research in larger cohorts, focused clinical work and longitudinal studies that could facilitate earlier therapeutic intervention.


Assuntos
Microglia , Esquizofrenia , Humanos , Microglia/metabolismo , Esquizofrenia/metabolismo , Inflamassomos/metabolismo , Minociclina/farmacologia , Minociclina/metabolismo , Neurônios/metabolismo
3.
Stem Cell Res ; 66: 102988, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36528016

RESUMO

Invasive lobular carcinoma (ILC) is a distinct type of breast cancer and is accounting up to 10-15 % of all mammary carcinomas showing a pronounced increase in incidence rates over the last two decades. We generated three induced pluripotent stem cell (iPSC) lines from CD34+ progenitor cells isolated from a mammary carcinoma patient diagnosed with ILC. Here, we describe the characterization of the iPSCs by array-based comparative genomic hybridization (array CGH), immunocytochemistry, flow cytometry, reverse transcriptase polymerase chain reaction and directed in vitro differentiation. The iPSC lines will find application in the field of breast cancer research.


Assuntos
Neoplasias da Mama , Carcinoma Lobular , Células-Tronco Pluripotentes Induzidas , Feminino , Humanos , Idoso de 80 Anos ou mais , Carcinoma Lobular/genética , Carcinoma Lobular/metabolismo , Carcinoma Lobular/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Hibridização Genômica Comparativa , Neoplasias da Mama/patologia , Diferenciação Celular/genética
4.
Stem Cell Res ; 64: 102902, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36055119

RESUMO

CD34+ cells were isolated from peripheral blood of a breast cancer patient. By the introduction of five integration-free episomal vectors, the CD34+ cells were successfully reprogrammed and resulted in four iPSC clones. Flow Cytometry, reverse transcriptase PCR and immunocytochemistry confirm a robust expression of pluripotency factors and the concomitant loss of exogenous reprogramming plasmids. The maintenance of genomic integrity was confirmed by array-based comparative genomic hybridization and iPSCs harbored the capacity to differentiate into all three germ layers. Here, we present the generation and characterization of four iPSC lines that will find application in the field of breast cancer research.


Assuntos
Neoplasias da Mama , Carcinoma , Células-Tronco Pluripotentes Induzidas , Humanos , Feminino , Células-Tronco Pluripotentes Induzidas/metabolismo , Reprogramação Celular , Hibridização Genômica Comparativa , Antígenos CD34/metabolismo , Carcinoma/metabolismo , Diferenciação Celular/genética
5.
Cancers (Basel) ; 14(12)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35740561

RESUMO

In light of the frequent development of therapeutic resistance in cancer treatment, there is a strong need for personalized model systems representing patient tumor heterogeneity, while enabling parallel drug testing and identification of appropriate treatment responses in individual patients. Using ovarian cancer as a prime example of a heterogeneous tumor disease, we developed a 3D preclinical tumor model comprised of patient-derived microtumors (PDM) and autologous tumor-infiltrating lymphocytes (TILs) to identify individual treatment vulnerabilities and validate chemo-, immuno- and targeted therapy efficacies. Enzymatic digestion of primary ovarian cancer tissue and cultivation in defined serum-free media allowed rapid and efficient recovery of PDM, while preserving histopathological features of corresponding patient tumor tissue. Reverse-phase protein array (RPPA)-analyses of >110 total and phospho-proteins enabled the identification of patient-specific sensitivities to standard, platinum-based therapy and thereby the prediction of potential treatment-responders. Co-cultures of PDM and autologous TILs for individual efficacy testing of immune checkpoint inhibitor treatment demonstrated patient-specific enhancement of cytotoxic TIL activity by this therapeutic approach. Combining protein pathway analysis and drug efficacy testing of PDM enables drug mode-of-action analyses and therapeutic sensitivity prediction within a clinically relevant time frame after surgery. Follow-up studies in larger cohorts are currently under way to further evaluate the applicability of this platform to support clinical decision making.

6.
Biomedicines ; 10(4)2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35453677

RESUMO

Postoperative abdominal adhesions are responsible for serious clinical disorders. Administration of plasma-activated media (PAM) to cell type-specific modulated proliferation and protein biosynthesis is a promising therapeutic strategy to prevent pathological cell responses in the context of wound healing disorders. We analyzed PAM as a therapeutic option based on cell type-specific anti-adhesive responses. Primary human peritoneal fibroblasts and mesothelial cells were isolated, characterized and exposed to different PAM dosages. Cell type-specific PAM effects on different cell components were identified by contact- and marker-independent Raman imaging, followed by thorough validation by specific molecular biological methods. The investigation revealed cell type-specific molecular responses after PAM treatment, including significant cell growth retardation in peritoneal fibroblasts due to transient DNA damage, cell cycle arrest and apoptosis. We identified a therapeutic dose window wherein specifically pro-adhesive peritoneal fibroblasts were targeted, whereas peritoneal mesothelial cells retained their anti-adhesive potential of epithelial wound closure. Finally, we demonstrate that PAM treatment of peritoneal fibroblasts reduced the expression and secretion of pro-adhesive cytokines and extracellular matrix proteins. Altogether, we provide insights into biochemical PAM mechanisms which lead to cell type-specific pro-therapeutic cell responses. This may open the door for the prevention of pro-adhesive clinical disorders.

7.
Cancers (Basel) ; 13(10)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063518

RESUMO

Glioblastoma is an aggressive primary tumor of the central nervous system. Targeting the immunosuppressive glioblastoma-associated microenvironment is an interesting therapeutic approach. Tumor-associated macrophages represent an abundant population of tumor-infiltrating host cells with tumor-promoting features. The colony stimulating factor-1/ colony stimulating factor-1 receptor (CSF-1/CSF1R) axis plays an important role for macrophage differentiation and survival. We thus aimed at investigating the antiglioma activity of CSF1R inhibition alone or in combination with blockade of programmed death (PD) 1. We investigated combination treatments of anti-CSF1R alone or in combination with anti-PD1 antibodies in an orthotopic syngeneic glioma mouse model, evaluated post-treatment effects and assessed treatment-induced cytotoxicity in a coculture model of patient-derived microtumors (PDM) and autologous tumor-infiltrating lymphocytes (TILs) ex vivo. Anti-CSF1R monotherapy increased the latency until the onset of neurological symptoms. Combinations of anti-CSF1R and anti-PD1 antibodies led to longterm survivors in vivo. Furthermore, we observed treatment-induced cytotoxicity of combined anti-CSF1R and anti-PD1 treatment in the PDM/TILs cocultures ex vivo. Our results identify CSF1R as a promising therapeutic target for glioblastoma, potentially in combination with PD1 inhibition.

8.
Stem Cell Res ; 54: 102427, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34139596

RESUMO

Peripheral-blood derived CD34+ hematopoietic stem and progenitor cells were isolated from a 49-year old male donor and were successfully reprogrammed into human induced pluripotent stem cells (hiPSCs) using integration-free episomal vectors. The hiPSC line exhibited a typical stem cell-like morphology and endogenously expressed several pluripotency markers by concomitant loss of exogenous reprogramming vectors. Genomic integrity was confirmed by microarray-based comparative genomic hybridization (array CGH). Further analysis affirmed the ability of this hiPSC line to differentiate into all three germ layers. Thus, the reported cell line may serve as a healthy control for disease modeling.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Reprogramação Celular , Hibridização Genômica Comparativa , Humanos , Leucócitos Mononucleares , Masculino , Pessoa de Meia-Idade
9.
Biomedicines ; 9(2)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578986

RESUMO

Peritoneal mucosa of mesothelial cells line the abdominal cavity, surround intestinal organs and the female reproductive organs and are responsible for immunological integrity, organ functionality and regeneration. Peritoneal diseases range from inflammation, adhesions, endometriosis, and cancer. Efficient technologies to isolate and cultivate healthy patient-derived mesothelial cells with maximal purity enable the generation of capable 2D and 3D as well as in vivo-like microfluidic cell culture models to investigate pathomechanisms and treatment strategies. Here, we describe a new and easily reproducible technique for the isolation and culture of primary human mesothelial cells from laparoscopic peritoneal wash cytology. We established a protocol containing multiple washing and centrifugation steps, followed by cell culture at the highest purity and over multiple passages. Isolated peritoneal mesothelial cells were characterized in detail, utilizing brightfield and immunofluorescence microscopy, flow cytometry as well as Raman microspectroscopy and multivariate data analysis. Thereby, cytokeratin expression enabled specific discrimination from primary peritoneal human fibroblasts. Raman microspectroscopy and imaging were used to study morphology and biochemical properties of primary mesothelial cell culture compared to cryo-fixed and cryo-sectioned peritoneal tissue.

10.
Cell Chem Biol ; 25(3): 279-290.e7, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29307839

RESUMO

Invasive fungal infections are accompanied by high mortality rates that range up to 90%. At present, only three different compound classes are available for use in the clinic, and these often suffer from low bioavailability, toxicity, and drug resistance. These issues emphasize an urgent need for novel antifungal agents. Herein, we report the identification of chemically versatile benzamide and picolinamide scaffolds with antifungal properties. Chemogenomic profiling and biochemical assays with purified protein identified Sec14p, the major phosphatidylinositol/phosphatidylcholine transfer protein in Saccharomyces cerevisiae, as the sole essential target for these compounds. A functional variomics screen identified resistance-conferring residues that localized to the lipid-binding pocket of Sec14p. Determination of the X-ray co-crystal structure of a Sec14p-compound complex confirmed binding in this cavity and rationalized both the resistance-conferring residues and the observed structure-activity relationships. Taken together, these findings open new avenues for rational compound optimization and development of novel antifungal agents.


Assuntos
Antifúngicos/metabolismo , Benzamidas/química , Ácidos Picolínicos/química , Amidas/química , Amidas/metabolismo , Amidas/farmacologia , Sequência de Aminoácidos , Antifúngicos/química , Antifúngicos/farmacologia , Aspergillus/efeitos dos fármacos , Benzamidas/metabolismo , Benzamidas/farmacologia , Sítios de Ligação , Candida albicans/efeitos dos fármacos , Cristalografia por Raios X , Farmacorresistência Fúngica/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Ácidos Picolínicos/metabolismo , Ácidos Picolínicos/farmacologia , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Relação Estrutura-Atividade
11.
J Neurosci ; 31(4): 1246-53, 2011 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-21273409

RESUMO

The close correlation between energy supply by blood vessels and energy consumption by cellular processes in the brain is the basis of blood flow-related functional imaging techniques. Regional differences in vascular density can be detected using high-resolution functional magnetic resonance imaging. Therefore, inhomogeneities in vascularization might help to identify anatomically distinct areas noninvasively in vivo. It was reported previously that cytochrome oxidase-rich blobs in the striate cortex of squirrel monkeys are characterized by a notably higher vascular density (42% higher than interblob regions). However, blobs have so far never been identified in vivo on the basis of their vascular density. Here, we analyzed blobs of the primary visual cortex of squirrel monkeys and macaques with respect to the relationship between vascularization and cytochrome oxidase activity. By double staining with cytochrome oxidase enzyme histochemistry to define the blobs and collagen type IV immunohistochemistry to quantify the blood vessels, a close correlation between oxidative metabolism and vascularization was confirmed and quantified in detail. The vascular length density in cytochrome oxidase blobs was on average 4.5% higher than in the interblob regions, a difference almost one order of magnitude smaller than previously reported. Thus, the vascular density that is closely associated with local average metabolic activity is a structural equivalent of cerebral metabolism and blood flow. However, the quantitative differences in vascularization between blob and interblob regions are small and below the detectability threshold of the noninvasive hemodynamic imaging methods of today.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Córtex Visual/irrigação sanguínea , Animais , Vasos Sanguíneos/metabolismo , Colágeno Tipo IV/metabolismo , Feminino , Macaca nemestrina , Imageamento por Ressonância Magnética , Masculino , Saimiri , Especificidade da Espécie , Córtex Visual/metabolismo
12.
Cereb Cortex ; 18(10): 2318-30, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18222935

RESUMO

In functional neuroimaging, neurovascular coupling is used to generate maps of hemodynamic changes that are assumed to be surrogates of regional neural activation. The aim of this study was to characterize the microvascular system of the primate cortex as a basis for understanding the constraints imposed on a region's hemodynamic response by the vascular architecture, density, as well as area- and layer-specific variations. In the macaque visual cortex, an array of anatomical techniques has been applied, including corrosion casts, immunohistochemistry, and cytochrome oxidase (COX) staining. Detailed measurements of regional vascular length density, volume fraction, and surface density revealed a similar vascularization in different visual areas. Whereas the lower cortical layers showed a positive correlation between the vascular and cell density, this relationship was very weak in the upper layers. Synapse density values taken from the literature also displayed a very moderate correlation with the vascular density. However, the vascular density was strongly correlated with the steady-state metabolic demand as measured by COX activity. This observation suggests that although the number of neurons and synapses determines an upper bound on an area's integrative capacity, its vascularization reflects the neural activity of those subpopulations that represent a "default" mode of brain steady state.


Assuntos
Capilares/anatomia & histologia , Circulação Cerebrovascular , Córtex Visual/irrigação sanguínea , Vias Visuais/irrigação sanguínea , Animais , Capilares/ultraestrutura , Contagem de Células , Molde por Corrosão , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético/fisiologia , Imuno-Histoquímica , Macaca mulatta , Microscopia Eletrônica de Varredura , Córtex Visual/citologia , Córtex Visual/metabolismo , Vias Visuais/citologia , Vias Visuais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...