Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 23(71): 18019-18024, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29024136

RESUMO

Long-lived photo-driven charge separation is demonstrated by assembling a triad on a protein scaffold. For this purpose, a biotinylated triarylamine was added to a RuII -streptavidin conjugate bearing a methyl viologen electron acceptor covalently linked to the N-terminus of streptavidin. To improve the rate and lifetime of the electron transfer, a negative patch consisting of up to three additional negatively charged amino acids was engineered through mutagenesis close to the biotin-binding pocket of streptavidin. Time-resolved laser spectroscopy revealed that the covalent attachment and the negative patch were beneficial for charge separation within the streptavidin hosted triad; the charge separated state was generated within the duration of the excitation laser pulse, and lifetimes up to 3120 ns could be achieved with the optimized supramolecular triad.

2.
Org Biomol Chem ; 14(30): 7197-201, 2016 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-27411288

RESUMO

Electron transfer from a biotinylated electron donor to photochemically generated Ru(iii) complexes covalently anchored to streptavidin is demonstrated by means of time-resolved laser spectroscopy. Through site-selective mutagenesis, a single cysteine residue was engineered at four different positions on streptavidin, and a Ru(ii) tris-diimine complex was then bioconjugated to the exposed cysteines. A biotinylated triarylamine electron donor was added to the Ru(ii)-modified streptavidins to afford dyads localized within a streptavidin host. The resulting systems were subjected to electron transfer studies. In some of the explored mutants, the phototriggered electron transfer between triarylamine and Ru(iii) is complete within 10 ns, thus highlighting the potential of such artificial metalloenzymes to perform photoredox catalysis.


Assuntos
Biotinilação/métodos , Complexos de Coordenação/química , Rutênio/química , Estreptavidina/química , Transporte de Elétrons , Cinética , Luz , Estrutura Molecular , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...