Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 8(1): 200, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349102

RESUMO

Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change.

2.
Sci Rep ; 10(1): 20514, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239702

RESUMO

Globally, lake surface water temperatures have warmed rapidly relative to air temperatures, but changes in deepwater temperatures and vertical thermal structure are still largely unknown. We have compiled the most comprehensive data set to date of long-term (1970-2009) summertime vertical temperature profiles in lakes across the world to examine trends and drivers of whole-lake vertical thermal structure. We found significant increases in surface water temperatures across lakes at an average rate of + 0.37 °C decade-1, comparable to changes reported previously for other lakes, and similarly consistent trends of increasing water column stability (+ 0.08 kg m-3 decade-1). In contrast, however, deepwater temperature trends showed little change on average (+ 0.06 °C decade-1), but had high variability across lakes, with trends in individual lakes ranging from - 0.68 °C decade-1 to + 0.65 °C decade-1. The variability in deepwater temperature trends was not explained by trends in either surface water temperatures or thermal stability within lakes, and only 8.4% was explained by lake thermal region or local lake characteristics in a random forest analysis. These findings suggest that external drivers beyond our tested lake characteristics are important in explaining long-term trends in thermal structure, such as local to regional climate patterns or additional external anthropogenic influences.

3.
Sci Total Environ ; 725: 138347, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32304963

RESUMO

Since the implementation of large-scale lake monitoring in the ~1980s, water color and dissolved organic carbon (DOC) concentrations have increased in many northern lakes (i.e., lake browning), impacting the functioning of aquatic ecosystems. In regions that formerly experienced high levels of acid deposition, this browning trend has been largely attributed to the recovery from the impacts of past acid deposition. However, the extent to which DOC levels have now returned to naturally higher, pre-industrial conditions is still poorly understood. In this study, we assessed whether DOC levels are still influenced by acid deposition in lakes near Sudbury, Ontario, a region that has been heavily affected by sulfur dioxide emissions from local metal smelting during the 20th century. We analyzed water chemistry monitoring data (1981-2018), together with comparisons between modern and pre-industrial DOC levels inferred from sediment spectroscopy, for 51 acid-sensitive and 24 buffered reference lakes across the Sudbury landscape. Since 1981, DOC concentrations doubled in acid-sensitive lakes, with a mean increase of +1.6 mg/L, whereas in more buffered reference lakes, mean DOC levels increased by only 0.8 mg/L. Similarly, sediment-inferred DOC trends indicate that current DOC levels are, on average, ~22% below pre-industrial levels in acid sensitive systems compared to only ~10% in buffered lakes. Weakening correlations between DOC and acidification-related water chemistry variables (e.g., pH, alkalinity, metals) further indicate a diminishing influence of acid deposition on DOC in Sudbury lakes. These results highlight the strong impact that acid deposition has historically had on lake-water DOC dynamics in this region, but also suggest that DOC levels are approaching natural baseline levels in less acid-sensitive lakes, and that other drivers, such as changes in climate or vegetation cover, are now becoming the dominant controls on changes in DOC concentrations.

4.
Sci Rep ; 9(1): 16676, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31723150

RESUMO

Dissolved organic carbon (DOC) concentrations and water colour are increasing in many inland waters across northern Europe and northeastern North America. This inland-water "browning" has profound physical, chemical and biological repercussions for aquatic ecosystems affecting water quality, biological community structures and aquatic productivity. Potential drivers of this "browning" trend are complex and include reductions in atmospheric acid deposition, changes in land use/cover, increased nitrogen deposition and climate change. However, because of the overlapping impacts of these stressors, their relative contributions to DOC dynamics remain unclear, and without appropriate long-term monitoring data, it has not been possible to determine whether the ongoing "browning" is unprecedented or simply a "re-browning" to pre-industrial DOC levels. Here, we demonstrate the long-term impacts of acid deposition and climate change on lake-water DOC concentrations in low and high acid-deposition areas using infrared spectroscopic techniques on ~200-year-long lake-sediment records from central Canada. We show that acid deposition suppressed naturally higher DOC concentrations during the 20th century, but that a "re-browning" of lakes is now occurring with emissions reductions in formerly high deposition areas. In contrast, in low deposition areas, climate change is forcing lakes towards new ecological states, as lake-water DOC concentrations now often exceed pre-industrial levels.

5.
ISME J ; 9(12): 2541-50, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26057844

RESUMO

Mercury (Hg) is an anthropogenic pollutant that is toxic to wildlife and humans, but the response of remote ecosystems to globally distributed Hg is elusive. Here, we use DNA extracted from a dated sediment core to infer the response of microbes to historical Hg delivery. We observe a significant association between the mercuric reductase gene (merA) phylogeny and the timing of Hg deposition. Using relaxed molecular clock models, we show a significant increase in the scaled effective population size of the merA gene beginning ~200 years ago, coinciding with the Industrial Revolution and a coincident strong signal for positive selection acting on residues in the terminal region of the mercuric reductase. This rapid evolutionary response of microbes to changes in the delivery of anthropogenic Hg indicates that microbial genomes record ecosystem response to pollutant deposition in remote regions.


Assuntos
Bactérias/genética , DNA Bacteriano/genética , Poluentes Ambientais/análise , Mercúrio/análise , Sequência de Aminoácidos , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ecossistema , Poluentes Ambientais/metabolismo , Poluição Ambiental/história , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , História do Século XIX , História do Século XX , Humanos , Mercúrio/metabolismo , Dados de Sequência Molecular , Oxirredutases/genética , Oxirredutases/metabolismo , Filogenia , Alinhamento de Sequência
6.
Proc Biol Sci ; 282(1798): 20142449, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25411451

RESUMO

Calcium (Ca) concentrations are decreasing in softwater lakes across eastern North America and western Europe. Using long-term contemporary and palaeo-environmental field data, we show that this is precipitating a dramatic change in Canadian lakes: the replacement of previously dominant pelagic herbivores (Ca-rich Daphnia species) by Holopedium glacialis, a jelly-clad, Ca-poor competitor. In some lakes, this transformation is being facilitated by increases in macro-invertebrate predation, both from native (Chaoborus spp.) and introduced (Bythotrephes longimanus) zooplanktivores, to which Holopedium, with its jelly coat, is relatively invulnerable. Greater representation by Holopedium within cladoceran zooplankton communities will reduce nutrient transfer through food webs, given their lower phosphorus content relative to daphniids, and greater absolute abundances may pose long-term problems to water users. The dominance of jelly-clad zooplankton will likely persist while lakewater Ca levels remain low.


Assuntos
Cálcio/análise , Cladocera/fisiologia , Cadeia Alimentar , Lagos/química , Zooplâncton/fisiologia , Animais , Dípteros/fisiologia , Modelos Biológicos , Ontário , Dinâmica Populacional , Especificidade da Espécie
7.
Environ Toxicol Chem ; 34(4): 761-76, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25477294

RESUMO

A modeling approach that was used to predict the toxicity of dissolved single and multiple metals to trout is extended to stream benthic macroinvertebrates, freshwater zooplankton, and Daphnia magna. The approach predicts the accumulation of toxicants (H, Al, Cd, Cu, Ni, Pb, and Zn) in organisms using 3 equilibrium accumulation models that define interactions between dissolved cations and biological receptors (biotic ligands). These models differ in the structure of the receptors and include a 2-site biotic ligand model, a bidentate biotic ligand or 2-pKa model, and a humic acid model. The predicted accumulation of toxicants is weighted using toxicant-specific coefficients and incorporated into a toxicity function called Tox, which is then related to observed mortality or invertebrate community richness using a logistic equation. All accumulation models provide reasonable fits to metal concentrations in tissue samples of stream invertebrates. Despite the good fits, distinct differences in the magnitude of toxicant accumulation and biotic ligand speciation exist among the models for a given solution composition. However, predicted biological responses are similar among the models because there are interdependencies among model parameters in the accumulation-Tox models. To illustrate potential applications of the approaches, the 3 accumulation-Tox models for natural stream invertebrates are used in Monte Carlo simulations to predict the probability of adverse impacts in catchments of differing geology in central Colorado (USA); to link geology, water chemistry, and biological response; and to demonstrate how this approach can be used to screen for potential risks associated with resource development.


Assuntos
Invertebrados/fisiologia , Metais/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Colorado , Simulação por Computador , Daphnia , Relação Dose-Resposta a Droga , Água Doce , Substâncias Húmicas , Lagos , Método de Monte Carlo , Medição de Risco , Rios , Zooplâncton
8.
Environ Pollut ; 173: 52-60, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23202282

RESUMO

Spatial and temporal changes in mercury (Hg) concentrations and organic carbon in lake sediments were examined from the Hudson Bay Lowlands to investigate whether Hg deposition to sediments is related to indicators of autochthonous production. Total organic carbon, "S2" carbon (mainly algal-derived OC), C:N and ∂(13)C indicators suggest an increase in autochthonous productivity in recent decades. Up-core profiles of S2 concentrations and fluxes were significantly correlated with Hg suggesting that varying algal matter scavenging of Hg from the water column may play an important role in the temporal profiles of Hg throughout the sediment cores. Absence of significant relationship between total Hg and methyl Hg (MeHg) in surficial sediments suggested that inorganic Hg supply does not limit MeHg production. MeHg and OC were highly correlated across lakes in surface and deep sediment layers, indicating that sediment organic matter content explains part of the spatial variation in MeHg concentrations between lakes.


Assuntos
Sedimentos Geológicos/química , Lagos/química , Mercúrio/análise , Poluentes Químicos da Água/análise , Poluição Química da Água/estatística & dados numéricos , Monitoramento Ambiental , Ontário
9.
Ecol Lett ; 13(4): 453-63, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20100243

RESUMO

Environmental variability in space and time is a primary mechanism allowing species that share resources to coexist. Fluctuating conditions are a double edged sword for diversity, either promoting coexistence through temporal niche partitioning or excluding species by stochastic extinctions. The net effect of environmental variation on diversity is largely unknown. We examined the association between zooplankton species richness in lakes and environmental variability on interannual, seasonal and shorter time scales, as well as long-term average conditions. We analyzed data on physical, chemical and biological limnology in 53 temperate zone lakes in North America and Europe sampled over a combined 1042 years. Large fluctuations in pH, phosphorus and dissolved organic carbon concentration on different time scales were associated with reduced zooplankton species richness. More species were found in lakes that showed greater temperature variation on all time scales. Environmental variability on different time scales showed similar or, in some cases, stronger associations with zooplankton species richness compared with long-term average conditions. Our results suggest that temporal fluctuations in the chemical environment tend to exclude zooplankton species while temperature variability promotes greater richness. The results indicate that anthropogenic increases in temporal variability of future climates may have profound effects on biodiversity.


Assuntos
Biodiversidade , Clima , Zooplâncton , Animais , Carbono/análise , Mudança Climática , Europa (Continente) , Água Doce/análise , Concentração de Íons de Hidrogênio , América do Norte , Análise de Componente Principal , Temperatura
10.
Ecol Lett ; 13(2): 162-74, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20015255

RESUMO

Predicting community and species responses to disturbance is complicated by incomplete knowledge about species traits. A phylogenetic framework should partially solve this problem, as trait similarity is generally correlated with species relatedness, closely related species should have similar sensitivities to disturbance. Disturbance should thus result in community assemblages of closely related species. We tested this hypothesis with 18 disturbed and 16 reference whole-lake, long-term zooplankton data sets. Regardless of disturbance type, communities generally contained more closely related species when disturbed. This effect was independent of species richness, evenness, and abundance. Communities already under stress (i.e., those in acidic lakes) changed most when disturbed. Species sensitivities to specific disturbances were phylogenetically conserved, were independent of body size, and could be predicted by the sensitivities of close relatives within the same community. Phylogenetic relatedness can effectively act as a proxy for missing trait information when predicting community and species responses to disturbance.


Assuntos
Crustáceos , Ecossistema , Zooplâncton , Animais , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...