Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38659917

RESUMO

Afferent neurons in developing sensory organs exhibit a prolonged period of burst firing prior to the onset of sensory experience. This intrinsically generated activity propagates from the periphery through central processing centers to promote the survival and physiological maturation of neurons and refine their synaptic connectivity. Recent studies in the auditory system indicate that these bursts of action potentials also trigger metabotropic glutamate receptor-mediated calcium increases within astrocytes that are spatially and temporally correlated with neuronal events; however, it is not known if this phenomenon occurs in other sensory modalities. Here we show using in vivo simultaneous imaging of neuronal and astrocyte calcium activity in awake mouse pups that waves of retinal ganglion cell activity induce spatially and temporally correlated waves of astrocyte activity in the superior colliculus that depend on metabotropic glutamate receptors mGluR5 and mGluR3. Astrocyte calcium transients reliably occurred with each neuronal wave, but peaked more than one second after neuronal events. Despite differences in the temporal features of spontaneous activity in auditory and visual processing regions, individual astrocytes exhibited similar overall calcium activity patterns, providing a conserved mechanism to synchronize neuronal and astrocyte maturation within discrete sensory domains.

2.
Neuron ; 109(16): 2545-2555.e7, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34245686

RESUMO

Astrocytes play an essential role in the development of neural circuits by positioning transporters and receptors near synapses and secreting factors that promote synaptic maturation. However, the mechanisms that coordinate astrocyte and neural maturation remain poorly understood. Using in vivo imaging in unanesthetized neonatal mice, we show that bursts of neuronal activity passing through nascent sound processing networks reliably induce calcium transients in astrocytes. Astrocyte transients were dependent on intense neuronal activity and constrained to regions near active synapses, ensuring close spatial and temporal coordination of neuron and astrocyte activity. Astrocyte responses were restricted to the pre-hearing period and induced by synergistic activation of two metabotropic glutamate receptors, mGluR5 and mGluR3, which promoted IP3R2-dependent calcium release from intracellular stores. The widespread expression of these receptors by astrocytes during development and the prominence of neuronal burst firing in emerging neural networks may help coordinate the maturation of excitatory synapses.


Assuntos
Astrócitos/metabolismo , Cálcio/metabolismo , Neurônios/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Camundongos , Sinapses/fisiologia
4.
Alzheimers Dement (Amst) ; 2: 39-48, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27239535

RESUMO

The mechanisms underlying Alzheimer's disease (AD) onset and progression are not yet elucidated. The extent to which alterations in the activity of individual neurons of an AD model are significant, and the phase at which they can be captured, point to the intensity of the pathology and imply the stage at which it can be detected. Using a machine-learning algorithm, we present a successful cell-by-cell classification of intracellularly recorded neurons from the B6C3 APPswe/PS1dE9 AD model, versus wildtypes controls, at both a late stage and at an early stage, when the plaque pathology and behavioral deficits are absent or rare. These results suggest that the deficits present in neuronal networks of both old and young transgenic animals are large enough to be apparent at the level of individual neurons, and that the pathology could be detected in nearly any given sample, even before pathologic signs.

5.
Brain Struct Funct ; 221(2): 1173-88, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25523106

RESUMO

UNLABELLED: The effect of Alzheimer's disease pathology on activity of individual neocortical neurons in the intact neural network remains obscure. Ongoing spontaneous activity, which constitutes most of neocortical activity, is the background template on which further evoked-activity is superimposed. We compared in vivo intracellular recordings and local field potentials (LFP) of ongoing activity in the barrel cortex of APP/PS1 transgenic mice and age-matched littermate CONTROLS, following significant amyloid-ß (Aß) accumulation and aggregation. We found that membrane potential dynamics of neurons in Aß-burdened cortex significantly differed from those of nontransgenic CONTROLS: durations of the depolarized state were considerably shorter, and transitions to that state frequently failed. The spiking properties of APP/PS1 neurons showed alterations from those of CONTROLS: both firing patterns and spike shape were changed in the APP/PS1 group. At the population level, LFP recordings indicated reduced coherence within neuronal assemblies of APP/PS1 mice. In addition to the physiological effects, we show that morphology of neurites within the barrel cortex of the APP/PS1 model is altered compared to CONTROLS. These results are consistent with a process where the effect of Aß on spontaneous activity of individual neurons amplifies into a network effect, reducing network integrity and leading to a wide cortical dysfunction.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Córtex Cerebral/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Córtex Cerebral/patologia , Modelos Animais de Doenças , Masculino , Potenciais da Membrana , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Lobo Parietal/metabolismo , Lobo Parietal/patologia , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Córtex Somatossensorial
6.
Neuron ; 85(5): 959-66, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25704951

RESUMO

Pathological tau leads to dementia and neurodegeneration in tauopathies, including Alzheimer's disease. It has been shown to disrupt cellular and synaptic functions, yet its effects on the function of the intact neocortical network remain unknown. Using in vivo intracellular and extracellular recordings, we measured ongoing activity of neocortical pyramidal cells during various arousal states in the rTg4510 mouse model of tauopathy, prior to significant cell death, when only a fraction of the neurons show pathological tau. In transgenic mice, membrane potential oscillations are slower during slow-wave sleep and under anesthesia. Intracellular recordings revealed that these changes are due to longer Down states and state transitions of membrane potentials. Firing rates of transgenic neurons are reduced, and firing patterns within Up states are altered, with longer latencies and inter-spike intervals. By changing the activity patterns of a subpopulation of affected neurons, pathological tau reduces the activity of the neocortical network.


Assuntos
Potenciais de Ação , Neocórtex/fisiopatologia , Rede Nervosa/fisiopatologia , Tauopatias/fisiopatologia , Proteínas tau/biossíntese , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neocórtex/metabolismo , Rede Nervosa/metabolismo , Tauopatias/metabolismo , Proteínas tau/genética
7.
Neurobiol Aging ; 35(9): 1982-91, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24792906

RESUMO

The effects of amyloid-ß on the activity and excitability of individual neurons in the early and advanced stages of the pathological progression of Alzheimer's disease remain unknown. We used in vivo intracellular recordings to measure the ongoing and evoked activity of pyramidal neurons in the frontal cortex of APPswe/PS1dE9 transgenic mice and age-matched nontransgenic littermate controls. Evoked excitability was altered in both transgenic groups: neurons in young transgenic mice displayed hypoexcitability, whereas those in older transgenic mice displayed hyperexcitability, suggesting changes in intrinsic electrical properties of the neurons. However, the ongoing activity of neurons in both young and old transgenic groups showed signs of hyperexcitability in the depolarized state of the membrane potential. The membrane potential of neurons in old transgenic mice had an increased tendency to fail to transition to the depolarized state, and the depolarized states had shorter durations on average than did controls. This suggests a combination of both intrinsic electrical and synaptic dysfunctions as mechanisms for activity changes at later stages of the neuropathological progression.


Assuntos
Envelhecimento/fisiologia , Doença de Alzheimer/etiologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/fisiologia , Lobo Frontal/citologia , Células Piramidais/fisiologia , Envelhecimento/metabolismo , Envelhecimento/patologia , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Animais , Progressão da Doença , Potenciais Evocados , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Potenciais da Membrana , Camundongos Transgênicos
8.
J Neurosci ; 32(33): 11241-9, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22895708

RESUMO

Amyloid-ß plaques are one of the major neuropathological features in Alzheimer's disease (AD). Plaques are found in the extracellular space of telencephalic structures, and have been shown to disrupt neuronal connectivity. Since the disruption of connectivity may underlie a number of the symptoms of AD, understanding the distribution of plaques in the neuropil in relation to the connectivity pattern of the neuronal network is crucial. We measured the distribution and clustering patterns of plaques in the vibrissae-receptive primary sensory cortex (barrel cortex), in which the cortical columnar structure is anatomically demarcated by boundaries in Layer IV. We found that the plaques are not distributed randomly with respect to the barrel structures in Layer IV; rather, they are more concentrated in the septal areas than in the barrels. This difference was not preserved in the supragranular extensions of the functional columns. When comparing the degree of clustering of plaques between primary sensory cortices, we found that the degree of plaques clustering is significantly higher in somatosensory cortex than in visual cortex, and these differences are preserved in Layers II/III. The degree of areal discontinuity is therefore correlated with the patterns of neuropathological deposits. The discontinuous anatomical structure of this area allows us to make predictions about the functional effects of plaques on specific patterns of computational disruption in the AD brain.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Mapeamento Encefálico , Vias Neurais/patologia , Placa Amiloide/metabolismo , Córtex Somatossensorial/metabolismo , Córtex Somatossensorial/patologia , Fatores Etários , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Análise de Variância , Animais , Benzotiazóis , Modelos Animais de Doenças , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Modelos Neurológicos , Mutação/genética , Presenilina-1/genética , Tiazóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA