Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Physiol (Oxf) ; : e14201, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007513

RESUMO

AIM: We aimed to test the hypothesis that a high-salt diet (HS) impairs NO signaling in kidney microvascular endothelial cells through a histone deacetylase 1 (HDAC1)-dependent mechanism. METHODS: Male Sprague Dawley rats were fed normal salt diet (NS; 0.49% NaCl) or HS (4% NaCl) for 2 weeks. NO signaling was assessed by measuring L-NAME induced vasoconstriction of the afferent arteriole using the blood perfused juxtamedullary nephron (JMN) preparation. In this preparation, kidneys were perfused with blood from a donor rat on a matching or different diet to that of the kidney donor. Kidney endothelial cells were isolated with magnetic activated cell sorting and HDAC1 activity was measured. RESULTS: We found HS-induced impaired NO signaling in the afferent arteriole. This was restored by inhibition of HDAC1 with MS-275. Consistent with these findings, HDAC1 activity was increased in kidney endothelial cells. We further found the loss of NO to be dependent upon the diet of the blood donor rather than the diet of the kidney donor and the plasma from HS-fed rats to be sufficient to induce impaired NO signaling. This indicates the presence of a humoral factor we termed plasma-derived endothelial dysfunction mediator (PDEM). Pretreatment with the antioxidants, PEG-SOD and PEG-catalase, as well as the NOS cofactor, tetrahydrobiopterin, restored NO signaling. CONCLUSION: We conclude that HS activates endothelial HDAC1 through PDEM leading to decreased NO signaling. This study provides novel insights into the molecular mechanisms by which a HS decreases renal microvascular endothelial NO signaling.

2.
Pediatr Nephrol ; 38(7): 2155-2163, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36622441

RESUMO

BACKGROUND: Adverse childhood experiences (ACEs), such as abuse, neglect, and household dysfunction, are associated with a higher risk of cardiovascular disease (CVD) and indicators of future CVD risk in adulthood, such as greater vascular stiffness. The impact of ACEs in adolescence is unclear, and understanding how ACEs relate to blood pressure (BP) and vascular function during early life is key for the development of prevention strategies to reduce CVD risk. We hypothesized that exposure to ACEs would be associated with changes in central hemodynamics such as increased vascular stiffness and higher BP during adolescence. METHODS: This pilot study enrolled 86 adolescents recruited from the Children's of Alabama. A validated ACE questionnaire was employed, and ACEs were modeled both as a continuous variable and a categorical variable (ACE ≥ 1 vs. ACE = 0). The primary outcomes used are considered to be indicators of future cardio-renal disease risk: aortic augmentation index normalized to 75 bpm (Alx75, a surrogate for vascular stiffness), carotid-femoral PWV (m/s), and ambulatory BP patterns. RESULTS: Adolescents with ACE ≥ 1 had significantly higher Alx75 (ACE: 5.2% ± 2.2 compared to no ACE: - 1.4% ± 3.0; p = 0.043). PWV only reflected this trend when adjustments were made for the body mass index. Adolescents with ACEs showed no differences in ambulatory BP patterns during the 24-h, wake, or sleep periods compared to adolescents with no ACEs. CONCLUSIONS: ACEs were associated with higher AIx75 in adolescence, which is a risk factor for future CVD. Adolescence could present an opportunity for early detections/interventions to mitigate adverse cardiovascular outcomes in adulthood. A higher resolution version of the Graphical abstract is available as Supplementary information.


Assuntos
Experiências Adversas da Infância , Doenças Cardiovasculares , Maus-Tratos Infantis , Humanos , Adolescente , Criança , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Projetos Piloto , Fatores de Risco
3.
Inflamm Bowel Dis ; 29(6): 960-972, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36661889

RESUMO

BACKGROUND: Early life stress (ELS) is an environmental trigger believed to promote increased risk of IBD. Our goal was to identify mechanisms whereby ELS in mice affects susceptibility to and/or severity of gut inflammation. METHODS: We utilized 2 published animal models of ELS. In the first model, newborn mice were separated from the dam daily for 4 to 8 hours starting on postnatal day 2 and then weaned early on postnatal day 17. Control mice were left undisturbed with the dams until weaning on postnatal day 21. In the second model, dams were fed dexamethasone or vehicle ad libitum in drinking water on postpartum days 1 to 14. Plasma and colonic corticosterone were measured in juvenile and adult mice. Colitis was induced in 4-week-old mice via intraperitoneal injection of interleukin (IL)-10 receptor blocking antibody every 5 days for 15 days. Five or 15 days later, colitis scores and transcripts for Tnf, glucocorticoid receptors, and steroidogenic enzymes were measured. RESULTS: Mice exposed to ELS displayed reduced plasma and colonic corticosterone. Control animals showed improvements in indices of inflammation following cessation of interleukin-10 receptor blockade, whereas ELS-exposed animals maintained high levels of Tnf and histological signs of colitis. In colitic animals, prior exposure to ELS was associated with significantly lower expression of genes associated with corticosterone synthesis and responsiveness. Finally, TNF stimulation of colonic crypt cells from ELS mice led to increased inhibition of corticosterone synthesis. CONCLUSIONS: Our study identifies impaired local glucocorticoid production and responsiveness as a potential mechanism whereby ELS predisposes to chronic colitis in susceptible hosts.


Using 2 distinct animal models, this study shows that in mice, early life stress leads to reduced colonic corticosterone and that induction of colitis after stress removal results in reduced transcription of glucocorticoid synthesis genes, increased Tnf, and enhanced chronicity of intestinal inflammation.


Assuntos
Colite , Estresse Psicológico , Animais , Feminino , Camundongos , Colite/metabolismo , Corticosterona/farmacologia , Modelos Animais de Doenças , Glucocorticoides , Inflamação/etiologia , Estresse Psicológico/complicações
4.
Physiol Rep ; 9(10): e14844, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34042301

RESUMO

Early life stress (ELS) is associated with cardiovascular disease (CVD) risk in adulthood, but the underlying vascular mechanisms are poorly understood. Increased hemoglobin and heme have recently been implicated to mediate endothelial dysfunction in several vascular diseases. Chronic physiological stress is associated with alterations in the heme pathway that have been well-described in the literature. However, very little is known about the heme pathway with exposure to ELS or chronic psychosocial stress. Utilizing a mouse model of ELS, maternal separation with early weaning (MSEW), we previously reported that MSEW induces endothelial dysfunction via increased superoxide production. We reasoned that heme dysregulation may be one of the culprits induced by MSEW and sustained throughout adulthood; thus, we hypothesized that MSEW induces heme dysfunction. We investigated whether circulating levels of heme, a circulating pro-oxidant mediator, are increased by MSEW and examined the role of the heme metabolic pathway and heme homeostasis in this process. We found that circulating levels of heme are increased in mice exposed to MSEW and that plasma from MSEW mice stimulated higher superoxide production in cultured mouse aortic endothelial cells (MAECs) compared to plasma from normally reared mice. The heme scavenger hemopexin blunted this enhanced superoxide production. Splenic haptoglobin abundance was significantly lower and hemoglobin levels per red blood cell were significantly higher in MSEW versus control mice. These findings lead us to propose that ELS induces increased circulating heme through dysregulation of the haptoglobin-hemoglobin system representing a mechanistic link between ELS and CVD risk in adulthood.


Assuntos
Heme/metabolismo , Privação Materna , Transdução de Sinais/fisiologia , Estresse Psicológico/sangue , Estresse Psicológico/psicologia , Desmame , Fatores Etários , Animais , Animais Recém-Nascidos , Endotélio Vascular/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez
5.
Int J Syst Evol Microbiol ; 68(4): 1356-1360, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29504926

RESUMO

Previously, experimental DNA-DNA hybridization (DDH) between Shewanellahaliotis JCM 14758T and Shewanellaalgae JCM 21037T had suggested that the two strains could be considered different species, despite minimal phenotypic differences. The recent isolation of Shewanella sp. MN-01, with 99 % 16S rRNA gene identity to S. algae and S. haliotis, revealed a potential taxonomic problem between these two species. In this study, we reassessed the nomenclature of S. haliotis and S. algae using available whole-genome sequences. The whole-genome sequence of S. haliotis JCM 14758T and ten S. algae strains showed ≥97.7 % average nucleotide identity and >78.9 % digital DDH, clearly above the recommended species thresholds. According to the rules of priority and in view of the results obtained, S. haliotis is to be considered a later heterotypic synonym of S. algae. Because the whole-genome sequence of Shewanella sp. strain MN-01 shares >99 % ANI with S. algae JCM 14758T, it can be confidently identified as S. algae.


Assuntos
Genoma Bacteriano , Filogenia , Shewanella/classificação , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA